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ABSTRACT 

A major objective of the Hypercube Matrix Computation effort at the Jet Propulsion 
Laboratory (JPL) is to investigate the applicability of a parallel computing architecture to the 
solution of large-scale electromagnetic Scattering problems. Three scattering analysis codes 
are being implemented and assessed on a JPL/Califomia Institute of Technology (Caltech) 
Mark I11 Hypercube. The codes, which utilize different underlying algorithms, give a 
means of evaluating the general applicability of this parallel architecture. The three analysis 
codes being implemented are a frequency domain method of moments code, a time domain 
finite difference code, and a frequency domain finite elements code. These analysis 
capabilities are being integrated into an electromagnetics interactive analysis workstation 
which can serve as a design tool for the construction of antennas and other radiating or 
scattering structures. 

This document is a summary of the first two years of work on the Hypercube 
Matrix Computation effort. It includes both new developments and results as well as work 
previously reported in the "Hypercube Matrix Computation Task: Final Report for 
1986-87" (JPL Publication 87- 18). 
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SECTION I 

INTRODUCTION 

A major objective of the Hypercube Matrix Computation task is to investigate the 
applicability of a parallel computing architecture to the implementation and solution of 
large-scale electromagnetic scattering problems by implementing codes which would 
encompass different numerical algorithms. Several analysis codes are being assessed on a 
parallel computing Mark III Hypercube. The first code which has been implemented is the 
frequency domain method of moments solution, Numerical Electromagnetics Code (NEE- 
2), developed at Lawrence Livermore National Laboratory. The second code is a time 
domain finite difference solution to Maxwell's equations. A third code currently being 
developed is a 2-dimensional finite element technique. 

To assess the applicability of the codes we must be able to characterize the 
performance. Several different measures may be applied when assessing this performance. 
The first measure compares two things: first, the problem size possible using the 
hypercube with 128 megabytes of dynamic memory employed in a 32-node configuration, 
and second, the problem size possible using a more typical sequential user environment. 
Another measure of performance is the computational speedup attained by the parallel 
architecture. The speedup can be measured by three methods: 1)  comparing the CPU times 
for key components of the code running on the 32-node Mark I11 Hypercube with the CPU 
times for the same code components running, for instance, on a VAX 11/750; 

2) comparing the times for the code running in 32 nodes with the times for the code 
running in a single node; and 3) comparing the times when the problem size per node is 
fixed and the number of active nodes is varied. This last measure of speedup assesses the 
scalability of the code to larger hypercube configurations. 

Having developed the analysis capabilities, we have as our next objective the 
integration of the codes into an electromagnetics interactive analysis environment. A 
workstation has been designed to facilitate all three analysis functions: 1 )  graphical 
specification of the structure to be analyzed, 2) hypercube execution of analysis codes, and 
3) graphical display of the output. 
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SECTION 11 

THE MARK 111 HYPERCUBE 

A. INTRODUCTION 

Recent advances in high speed microprocessor technology and in methods to 
combine large numbers of these processors into concurrent structures introduce cost- 
effective means for solving massive computing problems. A number of different schemes 
for the connectivity as well as for the components of the computing elements for such 
concurrent architectures have been suggested. Some machines utilize massive numbers of 
small-grain (i.e., small memory size) computing elements; others concentrate large-grain 
computing capability in a modest number of distributed computing elements. One such 
architecture is the Jet Propulsion Laboratory (JPL)/California Institute of Technology 
(Caltech) Hypercube. A hypercube is a connectivity scheme which can be viewed as an 
array of N nodes where each node is capable of communicating directly with n = log;! N 
neighboring nodes along the edges of an n-dimensional cube. The JPL/Caltech Hypercube 
is now in its third generation of development. At this time, configurations consist of up to 
64 nodes with a 128-node Mark 111 now being connected. 

B. HARDWARE 

The Mark 111 Ljpercube noc : has a pair of Motorola 68020 processors--one is the 
main application processor and the second is the communication processor (Figure 2.1). 
The communication processor handles internode communications generally without the 
need to interrupt the main processor. The hypercube uses the Motorola 68881 floating 
point co-processor (the Motorola 68882 is being used in later machines) which delivers in 
the range of 60,000-150,000 floating point operations per second (kiloflops) per node. A 
new floating point daughter board using the Weitek chip set has been added to each of the 
nodes, which boosts this performance to 2.5-10 megaflops per node. To this date the 
Weitek can only support 32-bit floating point operations and therefore has had limited 
utility for large-scale electromagnetics problems. The retrofitting of the daughter boards to 
64-bit floating point arithmetic is expected to take place in the fall of 1988 when Weitek 
releases the new double precision chip. 
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External 
Disks 

32 Node 
Mark 111 

Hypercube 

Control 
Processor 

Each Node: 
2 MC68020 CPUs + MC68881 Co-processor 
4 Mbyte DRAM 
128 Kbyte Static RAM 

Weitek Floating Point Accelerator 

Performance: 
Computation: 1-14 Mflopshode 
Communication: 2.0 Mbyte/sec/channel (Synchronous) 

0.5 Mbyte/sec/channel (Asynchronous) 

Figure 2.1. Hardware configuration for the Mark III Hypercube 

Each node of the hypercube has 4 megabytes of dynamic random access memory 
(DRAM). There is an additional 128 kilobytes of static RAM which can be utilized for the 
executable code if the code is sufficiently small (Le., about 100 kilobytes). Codes run 
approximately 15% faster in the fast static RAM than in the dynamic RAM. 
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c. SOFTWAREi 

Since the hypercube has memory distributed among nodes rather than shared 
memory, a message passing capability has been developed to permit nodes to communicate 
with one another. Two styles of communication have been implemented. The first is the 
synchronous or crystalline operating system (CrOS). In this communicating regime nodes 
run asynchronously but align activity when communication is required. For some 
applications the message passing requirements are highly irregular and would therefore 
result in large idle times waiting for nodes to synchronize. For such applications the 
Mercury operating system was developed which allows messages to be queued in an 
incoming buffer and then read as needed and likewise to be queued in an outgoing buffer 
and sent when the message is complete. The application program can flow freely between 
the two styles of communication. The measured throughput rate of CrOS messages is 2 
megabytes per second per channel with a node capable of communicating on all of its 
channels simultaneously. The throughput rate for Mercury is 0.5 megabytes per second. 

The Mark I11 Hypercube supports both the C and FORTRAN programming 
languages. An operating system entitled "Time Warp" has been developed to support 
discrete event simulations. Relatively little effort has been applied to this date to 
incorporate symbolic languages on the hypercube. There has, however, been some work 
on a version of distributed Prolog and a Lisp interpreter. 

D. NEW DEVELOPMENTS 

The fact that the Mark I11 Hypercube continues to evolve to respond to the needs of 
the user community is apparent in some of the newest developments. The addition of a 
memory management unit (MMU) which will enable such capabilities as multi-processing 
and virtual memory on a node is near completion. Global buffer boards which attach a 
subset of the nodes to the back plane allow the user to reset a portion of the hypercube (a 
"sub-cube") and to load in new executable code and data to a particular sub-cube of the 
hypercube. Both of these capabilities become particularly important as the hypercube is 
expanded to larger configurations. 

One of the newest developments which has recently become available is the ability 
to attach external devices to the nodes. A Concurrent Input/Output (CIO) interface board 
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was developed which interfaces the node to a VME-compatible peripheral device. This 
CIO board has a Motorola 68020 CPU and 2 megabytes of memory. The current board 
design has four communication channels, which permits it to be configured in a 3- 
dimensional CIO communication hypercube, leaving one channel to interface directly to an 
application hypercube node. Future board layouts are anticipated to include additional 
channels in the expectation that some applications may actually require one device per node 
(e.g., databases). With a CIO interface attached to each node, nodes then could access 
information on the disk drives via the CIO communication hypercube without using any 
application hypercube communication channels (Figure 2.2). A prototype CIO system 
became available in June, 1988 with 4 disk drives attached to a 32-node hypercube--one 
drive per 8-node sub-cube. The addition of disk drives to nodes is essential for the 
electromagnetics application. It will permit the solution of even larger problems as well as 
saving partial solutions for later use (see Section IV.C.5.c). 

Connection: 
Mark I11 nodes 0, 8, 16, 24 
to CIO nodes 0, 1 ,2 ,3 ,  
respectively 

CIO Hypercube 
doc = 2 

Mark III Hypercube 
doc = 5 

/ 

0 
0 
0 
0 

Four 380 Mbyte 
Winchesters 

Figure 2.2. Prototype hypercube Concurrent I/O system 
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SECTION 111 

THE FINITE DIFFERENCE TIME DOMAIN CODE 

A. INTRODUCTION 

Electromagnetic fields interacting with a dielectric or conducting structure produce 
scattered electromagnetic fields. To model the fields produced by complicated, volumetric 
structures, the finite difference time domain (FDTD) method employs an iterative solution 
to Maxwell's time-dependent curl equations. Because FDTD tracks the evolution of 
scattered fields in time, the method naturally lends itself to problems involving transient 
fields. K. Yee's work on FDTD considered such applications [3-31. A. Taflove and his 
colleagues at Northwestern University applied the method to the determination of steady 
state fields and the calculation for radar cross sections (RCSs) [3-41. Describing the use of 
FDTD for calculating steady state fields and RCSs on the Mark I11 Hypercube is the 
purpose of this section. 

Several sequential FDTD codes exist. Converting a FDTD code from Lawrence 
Livermore National Laboratory (LLNL) was our first attempt at producing a parallel FDTD 
code [3-11. The modular form and straightforward coding of this program greatly eased 
the task of parallel decomposition. However, the LLNL staff designed the code for the 
analysis of transient currents. Taflove provided us with a copy of his FDTD code along 
with a report describing the FDTD method and its applications to RCS studies [3-21. We 
added to our code the features required to make an RCS code with similar capabilities to 
Taflove's code's. At this point, references to the FDTD code describes our parallel 
implementation of the finite difference time domain method. 

The goal of the FDTD code is to track the propagation of an incident 
electromagnetic wave into a volume of space containing a dielectric or conducting structure 
and observe the wave's interaction with the scattering object. Wave tracking ends when 
sinusoidal steady state behavior occurs at each lattice cell or after a sufficient number of 
cycles of the incident field. A nonfluctuating value for the monostatic RCS examined after 
every cycle of the incident field is a more practical convergence criterion. 
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FDTD uses a finite difference approximation, in rectangular coordinates, to 
Maxwell's curl equations to explicitly solve for the fields at the current time. This iteration 
scheme replaces the need for a simultaneous solution for all field components [3-31. We 
envision the discretization of Maxwell's curl equations with a three-dimensional discrete 
lattice in space and a discrete time step. 

We model the scattering object by embedding the object in the discrete lattice. The 
relative permittivity, E, relative permeability, p, electric conductivity, 0, and magnetic 
conductivity, om mathematically describe the object. These parameters can be tensors 
which are functions of space. We do not consider the case where the material parameters 
are functions of time. We assign discrete values of these parameters to points on the 
discrete lattice to specify the scattering object. 

The parallel implementation of FDTD divides the global lattice of discrete field 
components into blocks of nearly equal dimensions. The code assigns neighboring blocks 

to nodes directly connected by communication channels. This decomposition scheme 
assures that each node can perform its field updates with resident information and 
information communicated by neighboring nodes. This code allows us to solve problems 
requiring as many as 2,048,000 unit cells on a 32-node Hypercube. For smaller problems, 
the code produces solutions in a fraction of the time required to solve the same problems on 
sequential computers. 

We compare the results from the parallel FDTD code using a variety of other 
analysis codes. We compare the reported current on the surface of a perfectly conducting 
cube with results from a finite difference code obtained from Taflove [3-21. We also use 
the FDTD code and the Taflove code to examine the RCS from a dielectric flat plate 
scatterer. In the test case section of this report, Section VI, we compare the FDTD code 
with the Numerical Electromagnetics Code (NEC) [3-71 and a code computing the analytic 
solution. In this section we find the near scattered field and the bistatic RCS. 

B .  GENERALTHEORY 

The equations governing the interaction of electromagnetic radiation with 
anisotropic dielectric or conducting structures are Maxwell's curl equations (3.1 and 3.2). 
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(3.1) 
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D = E E  J = o E  

The tensors 1, om, E, and (T determine the properties of the scattering object. The FDTD 
code implements the special case in which these tensors only contain nonzero entries along 
the diagonal. p(x,y,z) is the permeability tensor at coordinates (x,y,z). om is the magnetic 
conductivity. E is the permittivity. o is the electric conductivity. B, H, Jm, D, E, and J are 
the usual electromagnetic field quantities: magnetic induction, magnetic field, magnetic 
current, electric displacement, electric field, and electric current. 

From the differential equations, we construct six finite difference equations by first 
expressing equations 3.1 and 3.2 as separate scalar equations in rectangular coordinates. 
Next, we employ two-point central differencing in both spatial and temporal coordinates to 
discretize the scalar equations. References [3-11 and [3-21 discuss the mathematical details. 
The following equation 3.3 is the finite difference equation for the x component of the 
magnetic field. Equation 3.4 is the finite difference equation of the x component of the 
electric field. The finite difference equation for the other four components have a similar 
form. 

- 
pl l  ( i,j+1/2,k+1/2 ) H;+lI2( i,j+1/2,k+1/2 ) = 

* 
N 

(3.3) 
n-1/2 p l l  ( i,j+1/2,k+1/2) H x  ( i,j+1/2,k+1/2) 

n E;( ij+l@,k+l ) - E;( ij+l/2,k) E:( ij,k+l/2 - E,( ij+l,k+1/2 1 + + 
Az AY 

0 .  * 
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+ 

AY 
n-1/2 HY-”*( i+1/2,j,k-1/2 ) - H, ( i+1/2,j,k+1/2 ) + 

Az 
* - E11 0 1 1  - E11 0 1 1  

Ell’-- - - E l l = -  f- 

At 2 At 2 

(3.4) 

I, j, or k indexes the edges of unit cells. Superscripts on the field components index the 
discrete time steps. Ay and Az indicate the discrete increments in the y and z directions. At 
indicates the time step increment per iteration. Other subscripted quantities are tensor 

elements of p, 0,. E ,  or B. To obtain accurate results, the size of the unit cell (Figure 
3.1), the spatial finite difference step, must be a small fraction of the electrical size of the 
scatterer [3-21. Once we specify the unit cell size, we determine the time step by the 
Courant stability condition [3-41. 

FDTD constructs a lattice in coordinate space from several unit cells. The discrete 
electric field components, Ex, Ey, and Ez, lie on the edges of each unit cell. For example, 
Ex lies on the midpoint of edges in the x direction. The discrete magnetic field 
components, Hx, Hy, and HZ, occur on the centers of faces of each unit cell. For 
example, Hx lies on the center of faces perpendicular to the x direction. At discrete electric 
field locations, FDTD assigns permittivity and electric conductivity. At discrete magnetic 
field locations, FDTD assigns permeability and magnetic conductivity [3-31. 

The finite difference form of Maxwell’s curl equations determines the spatial and 
temporal update of the discrete field components on the lattice. At time nAt, the magnetic 
fields, on cell faces and at half a time step back, update neighboring electric field 
components on cell edges. For example, FDTD uses Hy and HZ components to update Ex 
components. FDTD then increments time by half the time step, A t .  At time (n+1/2)At, the 
new electric field components on cell edges update neighboring magnetic field components 
on cell centers. FDTD then increments time again by half of At. This process continues 
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Figure 3.1. Electric and magnetic field components in a typical unit cell 

until the discrete field components have constant maximum amplitudes and constant phase 
relative to a fixed iteration number [3-21. Another check for convergence is nonfluctuation 
in the monostatic RCS after each cycle of the incident field. 

Equations 3.1 and 3.2 give the relationship between total field components. 
Equations 3.3 and 3.4 give examples of updating total field components at each time step 
iteration. However, we can also write Maxwell's equations using scattered and incident 
electromagnetic field components. Starting with this set of equations, the finite difference 
algorithm would update the entire lattice in scattered fields. Before the introduction of 
second-order-correct radiation boundary conditions and RCS calculations, the FDTD code 
used the scattered-field update method. We describe radiation conditions and RCS 
calculations in following paragraphs. However, for several reasons, we choose to use the 
total-field update method near the scattering object and the scattered-field method near the 
truncation planes. The two update schemes require an interface region where the incident 
field adds to the scattered field. Taflove's report describes this update scheme in great 
detail [3-21. This report best states the reasons for the use of this mixed update method: 
"(a) The high-dynamic-range, total-field formalism is retained for the entirety of the 
interacting structure, permitting accurate computations of low-level fields penetrating into 
cavities through apertures, and into shadow regions. (b) The scattered-field formalism is 
retained for the lattice truncation region, permitting a very accurate simulation of the 
radiation condition. (c) The incident wave contribution need be computed or stored only 
for the field components at the rectangular surface connecting regions 1 [total field region] 
and 2 [scattered field region]. This results in much less computation or storage than if the 
incident field were to be computed at all points within the interacting structure to implement 
a pure scattered field formalism. (d) The scattered near field in Region 2 can be easily 
integrated to derive the far-field scattering and radar cross section . . . . I '  
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C . RADIATION BOUNDARY CONDITIONS 

The computation lattice cannot extend infinitely in all directions due to memory and 
computation time limitations. Therefore, we truncate the computation lattice. At the lattice 
boundary we cannot use the FDTD method to update field values, because the method 
requires points outside the lattice. Therefore, we apply a radiation condition to the scattered 
electric fields at the lattice truncation planes to simulate an infinite lattice. We need not 
apply a radiation condition to the discrete magnetic field components because these field 
components do not occur on the truncation planes. Formulas for first and second order 
radiation conditions, which contain first and second derivatives in space and time, and their 
corresponding central difference expressions are given in reference [3-51. A discussion of 
the derivation of radiation conditions from the scalar wave equation is given in reference 
[3-61. 

The application of second-order-correct radiation boundary conditions at the 
truncation planes require the scattered electric fields. However, equations 3.1 to 3.4 are 
total field equations. According to the Taflove method, we use an interface surface on the 
computation lattice to separate the region of total electric and magnetic fields and the region 
of scattered fields [3-21. This surface is arbitrarily set to three cells in from the truncation 
planes in all directions. We also introduce the incident electromagnetic field on this 
interface surface. This method computes the total fields in the region of the scattering 
object. 

Figure 3.2 illustrates the update of an x component of the scattered electric field on 
a truncation plane perpendicular to the y axis and with normal vector in the positive y 
direction. We label this point with the number 1. We cut a section perpendicular to the x 
axis to illustrate the update of point 1 .  To update point 1 at time nAt, second order correct 
radiation boundary conditions need the value of the scattered electric field at points 1 and 2 
at time 2At back and time At back. These conditions also require the value of the field 
points 3 to 10 at time At back. 

Equation 3.5 gives the update equations for electric field points on the truncation 
plane shown in Figure 3.2. The variable n is the current time step index. I and k are 
discrete field indices in the x and z directions. Nyc is the number of cells in the y direction. 
At is the discrete time step. Ax, Ay, and Az are the discrete spatial increments in the x, y, 
and z directions. Similar equations exist for the discrete x component of the electric field 
on truncation planes perpendicular to the z direction, for the discrete y component of the 
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e Hys 
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Figure 3.2. Exs points 2 to 10 update Exs point 1 on a truncation plane 
perpendicular to the y axis 

electric field on truncation planes perpendicular to the x and z directions, and for the 
discrete z component of the electric field on truncation planes perpendicular to x and y 
directions. 

n-2 E: (i,nyc+l,k) = E, (i,nyc,k) 

1 n-2 + At - [E: (i,nyc,k) + E, (i,nyc+l,k) 
cAt+Ay 

1 + [E:-' (i,nyc,k) + E:-' (i,nyc+l,k) 
cAt+Ay 

n- 1 + AY (c At) [E:-' (i+l,nyc+l,k) - 2 E, (i,nyc+l,k) 
2 

2 (Ax) (c At + Ay) (3.5) 

+ E:-' 

+ 

+ E:-' 

n- 1 
(i-l,nyc+l,k) + E:-' (i+l,nyc,k) - 2 E:-' (i,nyc,k) + E, 

AY (c At) - 2 E:-' (i,nyc 
2 

2 (Az) (c At + Ay) 

(i,nyc+l,k-1) + E:-' (i,nyc,k+l) - 2 E, (i,nyc,k) + E, n- 1 n- 1 

D. RADAR CROSS SECTION 

I (i- 1 ,nyc,k) 

1 (i,nyc,k- 1) 

Radar cross section (RCS) calculations require steady state far fields. However, 
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the FDTD code tracks the time evolution of the near fields. Therefore, the FDTD code 
incorporates magnitude and phase calculations for sinusoidal steady state near fields and 
near to far field transformations in order to calculate RCS. 

The code evaluates the steady state magnitude and phase in the following manner. 
The FDTD algorithm marches in time through several cycles of the incident field. After 
several cycles, the fields reach steady state. The code then monitors the peaks and valleys 
of the sinusoidally varying waveform by computing the first and second time derivatives. 
The code monitors only the electric and magnetic fields on an integration surface. The 
integration surface is one cell further out than the scattered field interface surface (1II.C). 
The code computes the magnitudes as one half the difference between peak and valley 
amplitudes. It computes the phase by recording the time step number at which a peak 
occurs and subtracting from a reference time step number. The FDTD code converts the 
resulting time difference to radians by multiplication with the incident field angular 
frequency. 

The following equations describe the RCS calculations. Equation 3.6 illustrates the 
computation of the RCS, 0. 

Equations 3.7 and 3.8 give the expressions for the far field Ee and E+ used in equation 3.6. 

EO= -ikoqo(Axcos 8 cos @ + Aycos 8 sin @ - A,sin 8 

+ q0 (-Fx sin @ + F, cos @)) -1 (3.7) 

Equations 3.9 and 3.10 give the magnetic and electric vector potentials that appear in 
equations 3.7 and 3.8. 
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4 

(3.9) 

(3.10) 

The variables in the above equations are the following: r is the distance of the 
observation point, r' is the distance of the source point, k, is the wave number of the 
incident field, qo equals 376.7303 ohms, 0 and Cp are the angles of the observation point, 
and the ES and HS vectors are the complex fields obtained from magnitude and phase 
evaluations on the integration planes. The integration is over a cubic surface surrounding a 
volume containing the scatterer. The vector n is the unit outward normal on this surface. 

The mathematical details of the near to far field transformations, as well as a more 
in-depth discussion of the second-order radiation condition and the magnitude and phase 
computation, are found in reference [3-21. 

E. PARALLEL DECOMPOSITION 

The FDTD code uses a spatial decomposition of the lattice of unit cells. The FDTD 
program fills the computation space with several unit cells. It then divides this global lattice 
into blocks of nearly equal dimensions. The FDTD code assigns neighboring blocks of the 
global lattice to hypercube nodes directly connected by communication channels. This 

decomposition scheme assures that each node can perform its discrete field updates, 
described in section 1II.B above, with resident information and information communicated 
by neighboring nodes. 

I .  Update of Discrete Field Components on the Computation Lattice 

We illustrate the update of field components within the volume of the 
computation lattice by considering a 7 x 7 x 7 unit cell lattice. Figures 3.3 and 3.4 show the 
decomposition of this small-lattice. In this example, the FDTD code uses four 
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Figure 3.3. The decomposition of the global lattice among four nodes of 
the hypercube, in which the black arrows symbolize the 
magnetic field components used to update the Ex component 
within nodes and between the boundaries of nodes 

nodes of the hypercube. It assigns a 7 x 4 x 4 cell block to node 0, a 7 x 3 x 4 cell block to 
node 1,  a 7 x 4 x 3 cell block to node 2, and a 7 x 3 x 3 cell block to node 3. Both figures 
show a cut in a plane perpendicular to the x axis. In this example, there are seven such 
planes along the x direction. For eight active nodes, the program will divide the global 
lattice in the x direction. The code will assign four cells in the x direction to the nodes 
responsible for negative x values and three cells in the x direction to the nodes responsible 
for positive x values. 

3-10 



Node 2 
0 

e 

0 

e 

0 

B) 

0 

0 

a 

0 t" 
Z" Node 0 0 

Node 3 

e o e o  Q .  

Node 1 

Figure 3.4. The decomposition of the global lattice among four nodes of 
the hypercube, in which the black arrows symbolize the 
electric field components used to update the H, component 
within nodes and between the boundaries of nodes 

Figure 3.3 illustrates the update of the x component of the electric field, Ex. To 
update the discrete values of E, on the lattice, FDTD requires the value of E, at the 

previous time step, the values of neighboring Hy and H, discrete fields at half a time step 
back, and the values and oll. Refer to the finite difference equation 3.4. For an Ex 
component in the middle of a block assigned to a particular node, the update is the same as 
in the sequential case. For an E, component on a boundary between nodes, neighboring 
nodes must communicate before the update. The black arrows pointing to a central Ex 
component illustrate the two types of updates that can occur within node 3. 

The parallel FDTD code updates Ey and E, components in a similar manner. For 
these components we can construct illustrations similar to Figure 3.3 for cuts perpendicular 
to the y and z planes. 
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Figure 3.4 illustrates the update of the x component of the magnetic field, H,. To 
update the discrete values of Hx on the lattice, the FDTD code requires the value of Hx at 
the previous time step, the values of neighboring E,, and E, discrete fields at half a time step 
back and the values p1 and oml Refer to the finite difference equation 3.3. For an H, 
component in the middle of a block assigned to a particular node, the update is the same as 
in the sequential case. For an Hx component on a boundary between nodes, neighboring 
nodes must communicate before the update. The black arrows pointing to a central H, 
component illustrate the two types of updates that can occur within node 0. 

The parallel FDTD code updates H, and H, components in a similar manner. For 
these components we can construct illustrations similar to Figure 3.4 for cuts perpendicular 
to the y and z planes. 

2. Update of Discrete Field Components on the Truncation Planes 

Second-order-correct radiation boundary conditions work well with the 
spatial decomposition of the global lattice. A processor responsible for field points on the 
truncation planes, the planes marking the boundary of the computation lattice, has enough 
resident and communicated field information to update truncation plane points using 
second-order-correct radiation conditions. 

Refer back to the example illustrated in Figure 3.2. If any of the points 3 to 10 
reside in neighboring nodes, the node containing point 1 must communicate with its 
neighbors before the update occurs. 

3. Radar Cross Section Calculation 

The spatial decomposition of the global lattice also works well for 
calculating the radar cross section, RCS. Several nodes in the hypercube contribute to the 
integration that yields the electric and magnetic vector potentials (equations 3.9 and 3.10). 
The FDTD code combines the local contributions to these potentials to calculate E, and E$ 
(equations 3.7 and 3.8). These globally accumulated field values contribute to give the 
RCS, o (equation 3.6). 
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RCS calculations depend on the magnitude and phase of discrete field components 
on an integration surface. The FDTD code uses a cubic surface surrounding the scattering 
object as the integration surface [3-21. Portions of the cubic integration surface reside in 
different nodes. The program obtains the magnitude of field components on this 
integration surface by recording the peak and valley of the steady state sinusoidal wave 
forms. When a peak occurs, the program also records the time step. From this time step 
information, the time step increment At, and the angular frequency of the incident field, the 
program calculates the phase relative to a reference time step. 

F. PERFORMANCE OF THE FDTD CODE ON THE HYPERCUBE 

To analyze the performance of the FDTD code, we identify the computing intensive 
parts of the program. FDTD contains input/output, initialization, and setup subroutines. 
However, the time step iteration loop, in which the program performs field updates, 
radiation boundary condition updates, internode communication, and magnitude and phase 
tracking, comprises almost all of the execution time. 

One method of efficiency measurement fixes the number of unit cells in each node 
while increasing the number of active nodes. If the code were 100% efficient and if the 
number of active nodes increases by a factor N, the execution time of the code should 
remain constant because the total computational load also increases by a factor N. 
However, the time may not remain constant because of the added internode 
communication. Note that, with each increase in the number of active processors, FDTD 
solves a different problem because the global lattice size increases. 

We concentrate on the various components of the iteration loop and give results for 
this method of efficiency measurement. 

Figure 3.5 shows four sets of timing runs. The horizontal axis indicates the 
number of active processors, 1, 2,4,  8, 16, or 32. The vertical axis shows the execution 
time in milliseconds. Hollow squares indicate the maximum reported internode 
communication time per iteration. Because nodes responsible for the truncation planes of 
the global lattice may communicate less, nodes report distinct internode communication 
time. Hollow triangles indicate the maximum reported time per iteration to perform second- 
order-correct radiation boundary updates. Filled squares indicate the maximum reported 
time per iteration to perform electric and magnetic field updates within the volume of the 
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Figure 3.5. Four sets of timing runs for a fixed number of unit cells per 
node of the hypercube 
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computation lattice. Diamonds indicate the maximum reported time per iteration to perform 
magnitude and phase tracking on the integration surface. Lastly, filled triangles indicate the 
maximum reported total time per iteration. We used lOOO, 8000,27,000, and 64,OOO unit 
cells per node. 

The various components of the iteration loop predictably follow certain trends. The 
communication time per iteration increases with the number of processors. We expect this 
increase because as the number of processors increases, a given node has more neighbors 
with which to exchange information. However, the communication time is a small fraction 
of the total time per iteration and is a small fraction of the time per iteration to perform field 
updates. 

The communication time should hit an upper limit for a given density of cells per 
node because a node can communicate in, at most, six directions for the three-dimensional 
FDTD method and because the amount of communicated information in a given direction 
remains constant for a fixed density. The existence of this upper limit is possible if nodes 
do not wait while other nodes in the configuration communicate. All nodes involved in a 
communication step should first write a packet of information, read the packet sent by its 
neighbor, and then continue to send and read additional packets. The current version of 
FDTD does not have this communication scheme. 

As the number of nodes increases, the time per iteration to perform radiation 
boundary updates decreases for processor configurations of 2,4,8,  and 16. For 32 active 
processors, the time per iteration increases from the time reported for 16 processors. As 
the number of processors increases, there are two conflicting influences on the time to 
perform radiation boundary updates. Although the number of unit cells remains constant in 
each node as we increase the number of nodes, FDTD still breaks up the truncation planes 
among the processors on the periphery of the global lattice. This division is the reason for 
the decreased times in 2, 4, 8, and 16 nodes. Second-order boundary condition updates 
also require internode communication. This communication is the reason for the increased 
time in 32 nodes. 

There is a slight increase in the time per iteration for field updates as the number of 
processors increases. As the number of processors increases, some perform less boundary 
condition updates. Because the number of cells remains constant, these nodes must now 
perform additional field updates within the volume of the computation lattice. 
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For a fixed density of cells per processor, the four plots indicate that these 
competing times result in a faster total execution time per iteration in 4,8, 16 and 32 nodes 
when compared with that for 1 and 2 nodes. Internode communication has minimal effects 
on the total execution time for problems saturating the capacity of each active node. With 
the above mentioned improvements in internode communication, this efficiency should 
remain high for arbitrarily large node configurations. 

The parallel finite difference code performs well on the Mark 111 Hypercube. The 
efficiency for a fixed global lattice size from 1 to 32 nodes is approximately 80%. The 
efficiency for a fixed number of unit cells per node from 1 to 32 nodes is above 90%. 

There does not exist a sequential version of the FDTD code. However, for those 
individuals interested in a comparison between sequential and parallel execution times for 
codes using the FDTD method, we compare two codes, Taflove's sequential code and the 
parallel FDTD code, of comparable capabilities. Taflove's sequential code is optimized 
because it makes no subroutine or function calls within the body of the iteration loop and 
explicitly uses an incident plane wave excitation. However, the parallel FDTD code makes 
several subroutine calls within the body of the iteration loop, including calls to functions 
which allow the user to specify the form of the incident field. For the conducting cube 
case, presented in the next section, the parallel code on the Mark I11 Hypercube runs 
approximately 22.7 times faster than Taflove's code on a VAX/750 and 8.8 times faster 
than Taflove's code on a VAX/785. Both VAX times are total CPU usage. 

G. RESULTS FOR DIFFERENT SCATTERERS 

To test the validity of the results from the FDTD code, we compare the program's 
reported currents on the surface of a perfectly conducting cube with the results on page 163 
of reference [3-21. 

We illustrate the scattering object in Figure 3.6. The scattering object is a perfectly 
conducting cube in vacuum. The cube is one meter in each direction. The unit cell size is 
0.05 x 0.05 x 0.05 m. The computation lattice size is 2 x 2 x 2 m. The total number of 
cells is 40 x 40 x 40. The wave number times the length of a cube side, ks, equals 2. A 
plane wave is incident on the cube's front face. The direction of propagation of this plane 
wave is the +y direction. The electric field is polarized in the z direction with magnitude 
1 V/m. The magnetic field is polarized in the x direction with magnitude 

3-16 



m. 

Figure 3.6. The perfectly conducting cube scatterer. The paths for evaluating the currents 
on the surface are bold. Arrows indicate the polarization and direction of the 
incident plane wave. 

1/376.73 ampere/m. The frequency is 95.43 MHz. The wavelength is 3.141593 m. The 
number of iterations is 630 time steps with a time increment of 83.39 x seconds. 

In Figure 3.7, we evaluate the currents on the surface of the perfectly conducting 
cube scatterer. We used Taflove's sequential FDTD code and plotted the results as hollow 
squares. We ran the parallel FDTD code and plotted the results as plus marks (+). The top 
two plots show the magnitude and phase of the x component of the current on the bottom 
path for the perfectly conducting cube scatterer. The last two plots show the magnitude and 
phase of the z component of the current on the side path. The horizontal axes indicate 
observation points taken at intervals of 0.05 m on the current path. The vertical axes 
indicate either the normalized current or the phase. The Taflove and the FDTD numbers 
agree well. 

2 Along with the currents, we found a monostatic radar cross section of 2.14 m 
from the Taflove code and 2.1 1 m2 from the parallel FDTD code. 

We also scattered a plane wave from a anisotropic flat plate scatterer according to 
the parameters specified in reference [3-21. The plate is 0.1 x 0.00625 x 0.3 m. The unit 
cell size is 0.00625 x 0.00625 x 0.00625 m. The computation lattice size is 0.2 x 0.1 125 x 
0.4 m. The total number of cells is 32 x 18 x 64. The plate has a relative permittivity equal 
to 1 in the z direction and 40 in the x and y directions. It has an electric conductivity of 
3.72 x 107 mholm in the z direction and 28 mho/m in the x and y directions. A plane wave 
is incident in the plus y direction. The frequency is 1.0 GHz. Each time step increments 
the time by 10.42 x seconds. 
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Figure 3.7. The magnitude and phase for the x component of the current 
on the path below the cube scatterer (top), and the magnitude 
and phase for the z component of the current on the side path 
of the cube scatterer (bottom) 

We also obtained a monostatic radar cross section of 1.94 m2 from the Taflove code 
at iteration 576 and 1.90 m2 from the parallel FDTD code at iteration 576. However, 
according to Figure 3.8, the near fields have not completely reached steady state. This 
figure shows the monostatic RCS as a function of the iteration count for the flat plate 
scatterer. 
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H .  CONCLUSIONS 

One can code the FDTD method on the hypercube very efficiently. In the particular 
parallel implementation described above, communication is only between neighboring 
processors resulting in low communication time compared with computations occurring in 
the iteration loop. The large memory available on the hypercube and the ability to scale the 
number of hypercube nodes allow the solution of electrically large three-dimensional 
anisotropic scatterers. 
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Figure 3.8. 
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Monostatic RCS versus iteration count for the flat plate 
scatterer. We use this plot to check the progress of the near 
fields towards steady state. 
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SECTION IV 

THE FREQUENCY DOMAIN METHOD OF MOMENTS CODE 

A. INTRODUCTION 

The Numerical Electromagnetics Code (NEC-2), developed at Lawrence Livermore 
National Laboratory (LLNL), is used for the analysis of the electromagnetic response of 
antennas and other metallic structures. This code computes the induced currents on 
structures modeled by small wires or surface patches. Other near-field quantities such as 
electric or magnetic fields, as well as radiated fields, are evaluated from the solution of the 
induced currents. The code combines an integral equation for smooth surfaces with one 
specialized for wires to model a wide range of structures. By using the method of 
moments, the integral equations are reduced to a matrix equation. The solution of the 
matrix equation is then used for evaluation of the currents on wire segments and surface 
patches. The numerical solution requires a matrix equation of increasing order as the 
structure size is increased relative to the wavelength of the incident field. Although there 
are no theoretical size limitations, modeling of structures with dimensions more than 
several wavelengths is impractical on conventional computers due to limitations in memory 
or excessive computing time. This makes the NEC program a very good candidate for 
conversion to the hypercube. On the hypercube, the fast parallel algorithm and large 
memory can extend the limits of NEC many times beyond conventional computers. 

The LLNL NEC-2 is a large FORTRAN code containing 77 subroutines and many 
features such as: 

- Computation of scattered or radiated electromagnetic fields from structures 
modeled by wires and surface patches 

- Effects of perfect or lossy ground 

- Modeling thick wires using an extended thin wire kernel 

- Modeling of loaded structures (including imperfect conductors) 

- Numerical Green's function 

- Modeling non-radiating networks 
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In the parallel NEC code, all features of the sequential NEC are being incorporated 
except the modeling of lossy ground and non-radiating networks. 

B. GENEWTHEORY AND ALGORITHMS 

The detailed description of the theory of the NEC-2 method of moments is given in 
Reference [4-11. In the following sections, that theory is discussed in more general terms 
without any attempt to cover the details. 

The NEC Program uses both an electric-field integral equation and a magnetic-field 
integral equation to model the electromagnetic response of general metallic structures. 
These integral equations follow the form of an integral representation for the electric field of 
a volume current distribution or the magnetic field of a surface current distribution, 
respectively. Using these equations and the boundary condition equations on the surface 
results in a general integral equation where the unknowns are the longitudinal currents on 
wire segments and the two perpendicular components of the surface current on patches. 
These equations can be expressed in terms of a general linear operator as: 

L ? = E  (4- 1) 
where 

L is the linear operator consisting of integral and differential operators, 
I is the current on the structure, and 
E represents the excitation to the system such as a voltage source or an incident 
field. 

In the NEC program, the operator equation (4-1) is solved by a moments method in 
which the weighting functions, q , are delta functions: 

where 
- 
r is the integration variable representing a point on the surface of the structure, and 

ri is the location of the center of a wire segment or a patch. 
- 
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The choice of the weighting function makes this a point matching technique. The current 
basis functions are defined separately for wires and patches. 

For M number of patches, the basis functions are simple pulse functions, 

where 

I! ( r ) = 1 for r on patch j and zero otherwise. 

The total current on patches can be expressed as 

j= 1 j= 1 

For N number of wires, the basis function is expanded into three terms: a constant, 
a sine, and a cosine. For segment j the basis function is represented by: 

(4-5) - -  - -  w -  I, ( r )  = a j + b j s i n k ( r - r , ) + c j c o s k ( r - r , )  , j = 1 ,  ..., N 

where 
- 
rj is the location of the center of segment j, 
k is the free space wave number, and 
aj, bj, and Cj  are constants. 

It is assumed that this basis function has a peak on segment j and goes to zero at the other 
end of the segments connected to segment j (Figure 4.1). 
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Figure 4.1. The jth basis function for wires 

Using the local continuity condition of charge and current, two of the three 
constants in each basis function are eliminated and the total current can be expressed as: 

j=l 

where 
Fj represents the remaining constants. 

Combining the current expansion for patches and wires we get: 

N+2M 

j=l 

...- 
I ( r )  = C F~ I ~ ( ; )  

where 
W P  
J J  Ij represents either I. or 1. . 

(4-6) 

(4-7) 

A set of equations is obtained by taking the inner product of equation (4-1) with the 
set of weighting functions in equation (4-2), Oi : 

(ai, L i )  = (ai ,  E )  (4-8) 

Due to the linearity of the operator L, substitution for I yields: 
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In matrix form equation (4-9) can be written as: 

[AI [FI = [El (4- 10) 

where 
[A] in general is a (N+2M) * (N+2M) matrix called the "interaction matrix," 
[Fl is a (N+2M) * 1 array of basis function amplitudes, 
[E] is a (N+2M) * 1 array of excitation at the center of wire segments and patches. 

In the parallel NEC program, the matrix A is factored by one of two techniques: 
1) the Householder transformation, which results in an upper triangular matrix, or 
2) Gaussian elimination, which results in a lower/upper pair of triangular matrices. 
Depending on the factorization method selected, either back substitution (for Householder 
transformation) or both back and forward substitution (for Gaussian elimination) are used 
to compute the amplitudes of the basis functions. 

For structures having N wire segments and M surface patches, equation (4-10) can 
be written as: 

= [:: 3 (4-1 1) 

where 
Fw and F, are basis function amplitudes for wires and patches, respectively. 
E, and H, are the electric fields at the center of wire segments and the magnetic 
fields at the center of surface patches, respectively. 

The interaction matrix is now divided into 4 submatrices a, b, c, and d. A matrix 
element aij in submatrix a represents the electric field at the center of segment i due to the j* 
segment's basis function centered on segment j. A matrix element dkl in submatrix d 
represents a tangential magnetic field component at patch k due to a surface-current pulse 
on patch 1. Matrix elements in submatrices b and c represent electric fields due to surface- 
current pulses and magnetic fields due to segment basis functions, respectively. 
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Figure 4.2. Two examples of symmetry: (a) coaxial rings (cylindrical 
symmetry); (b) a rhombic antenna (plane symmetry) 

For problems where the structure to be analyzed has cylindrical symmetry, or 
planes of symmetry such as the one shown in Figure 4.2, the computation time can be 
reduced significantly. 

In a case where there are 1 symmetric cells in the structure, equation 4-10 can be 
written as: 
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F l  

I 

El 

E2 

E3 

El 

(4- 12) 

where now each submatrix Ai is of dimension NPEQ = (N+ 2M'), where N' and M are 
the number of wire segments and surface patches in each symmetric cell. This would 
reduce the time to fill the interaction matrix by a factor of 1/1 . It can also be shown that by 
taking discrete Fourier transforms of equation (4-12), it can be solved by factoring 1 
matrices of order NPEQ instead of one matrix of order 1 "NPEQ. This would reduce the 
factor time by 1/1 and the solution (forward and back substitution or back substitution, 
depending on the factoring technique used) time by about 1/Z. The time to compute Fourier 
transforms is generally small compared to the time for matrix operations. Symmetry also 
reduces the number of locations required for matrix storage by 1/1 since only the first row 
of submatrices needs to be stored. 

In the NEC-2 program, the current of each wire segment can be approximated either 
by a thin wire kernel or by an extended thin wire kernel. In the thin wire approximation, 
the segment current is represented by a current filament. This limits the use of the thin wire 
models to 

A 
- > 8  a 

where 
A = the length of each segment, and 

a = the radius of each segment. 

With the extended thin wire approximation, the segment current is represented by a current 
tube which can be used for models with 

A 
- > 2  a 
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Another important feature of the NEC-2 program is its capability to model 
structures with lumped or distributed loads, which includes modeling with lossy wires. 
This is accomplished by a simple modification to the boundary condition equation. For 
unloaded structures, the general boundary equation is: 

where 
A 

n is the normal vector to the structure, and 
Es and E1 are the scattered and incident fields, respectively. 

For loaded structures, this equation is modified as follows: 

h -  - s  - 
n ( r )  * [E ( r )  + E'(;)] = Z , ( ; )  [;(;) * J , ( i ) ]  

(4- 13) 

(4-14) 

where 
Zs = the surface impedance, and 
Js = the surface current density. 

C .  PARALLEL DECOMPOSlTION OF NEC 

1 .  Structure of the Code 

As discussed in Section IV.A, the purpose of the NEC code is to calculate 
the radiation pattern of an object modeled by wires and patches. The user specifies the 
incident excitation, which will be an incident electromagnetic wave for scattering problems 
and a voltage source in the object for antenna problems. 

The NEC code solves for currents I induced in the object by the excitation E. To do 
this, the unknown currents I are expanded into known basis functions with unknown 
amplitudes. The vector F is found by solving the matrix equation A*F=E, where E is the 
excitation vector and A is the interaction matrix. After the matrix equation is solved for F, 
the currents I induced in the object are calculated from F and the basis functions. The 
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radiation pattern is then calculated from the induced currents I. The structure of the 
sequential VAX code is illustrated in Figure 4.3. 

In the NEC code developed for the Mark 111 Hypercube, while the basic approach 
outlined above is unchanged, the actual code structure is similar to the sequential VAX 
code. Most of the calculations are done in the hypercube elements (nodes), i.e., the fill of 
the interaction matrix, the factorization, and the solution. The calculation of the induced 
currents and the near and far fields are performed in the Control Processor (CP). These 
field calculations are currently being added to the element code. 

The basic structure of the parallel NEC code is shown in Figure 4.4. The structure 
of the code in the CP is shown on the left and that of the hypercube code on the right. 

a. Input. The input section of the code is performed in the CP. This 
section includes reading the various input data cards from a file, creating the wires and 
patches from the geometry input cards, setting up parameters regarding the excitation 
vector, and determining what output is to be calculated from the input cards. 

First, the input data relating to setting up and solving the matrix equation is read and 
processed. This includes all of the geometry and excitation information. If the scattered 
radiation pattern is to be calculated for an electromagnetic wave incident from several 
different angles, NEC must solve the matrix equation A*F=E for the same A matrix but 
several different E vectors, corresponding to the different angles of incidence. In this case, 
the parameters needed for filling all of these E’s are calculated at the start in the CP in the 
new subroutine ETMFILL. The information needed for filling the A matrix and the E 
vectors is then passed to the hypercube by communication between the CP subroutine 
CPCOMM and the hypercube main program NECELT. At this point, the CP is idle until it 
receives the solution vector F for the first excitation vector E. 

b. Matrix Fill. After receiving the initialization data from the CP, the 
element code first calls the subroutine CMSETN, which handles the fill of the interaction 
matrix A. The parallel fill of this matrix is described in Section IV.C.2 below. If there is 
symmetry in the modeled object, the user can specify the symmetry option and, by doing 
so, significantly reduce the order of the matrix equation to be factored and solved. 

4-9 



# 

SOLVE F = A - ’  E 
L 

I FILL A 

CALCULATE I FROM F 

I FACTOR A I 

NEXT E 

END 

Figure 4.3. Structure of the sequential NEC-2 program 
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C. Excitation Fill. After the matrix fill, the excitation E is calculated in 
the subroutine ELTETM, described in Section IV.C.3. If the matrix equation is to be 
solved for multiple right-hand sides, all E vectors are filled at this time through multiple 
calls to this Subroutine. 

For cases with I symmetric subsections, the l-point discrete Fourier transform of 
the E's is next performed by the subroutine ELTDFT. Multiple calls to this subroutine are 
made for the case of multiple excitation vectors. 

The E's and their discrete Fourier transforms are calculated here before the 
factorization. The Gaussian elimination method of factorization does not transform the E 
vector(s), but the Householder transformation technique does. 

d. Factorization. The main element program NECELT calls the 
subroutine FACTRSN, which then performs the factorization of A. For cases with I-fold 

symmetry, the factorization of A is done separately on the 1 symmetric sections. The 
subroutine FACTRSN makes 1 calls to either the Householder transformation subroutine, 
"NFACTR,  or the Gaussian elimination subroutine, GAUSS. For multiple right-hand 
sides, the factorization of A or each of A s  symmetric subsections is done only once. 

e. Matrix Eauation Solution. After the factorization is complete, the 
matrix equation is solved by back substitution in the case of the Householder 
transformation method, or by both forward and back substitution for Gaussian elimination. 
The solution is done in the subroutine PARSOLV, which solves the the matrix equation 
separately for each of the I symmetry subsections. PARSOLV is called by the subroutine 
ELTSOLN. For symmetric cases, ELTSOLN performs the inverse discrete Fourier 
transform of the solution vector F. 

After the solution vector F is found for a particular excitation E, this vector is 
passed back to the CP. For cases with multiple right-hand sides, the hypercube then 
makes another call to PARSOLV to solve the transformed matrix equation for the next E 
while the CP is processing the previous solution vector F. After the hypercube finds and 
passes back the solution vector F for the last excitation E, the hypercube code terminates. 

f .  Current Calculation and OutDut. When the CP receives its first 
solution vector F, the induced currents I are calculated sequentially from F by the 
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subroutine CABC. The CP then calculates whatever output was specified in the input data, 
e.g., near fields and far field radiation patterns, and writes the output to a file. 

For cases with multiple right-hand sides, the CP then is idle until it receives the next 
solution vector F. When the output from all excitations has been found, the CP code 
terminates. 

2. Interaction Matrix Fill 

The interaction matrix A is shown in terms of its four submatrices a, b, c, 
and d in equation (4-11). In the NEC program the elements of these submatrices are 
computed by subroutine CMWW (wire-to-wire interaction), CMSW (surface-to-wire 
interaction), CMWS (wire-to-surface interaction), and CMSS (surface-to-surface 
interaction), respectively. An element A of the interaction matrix is computed by evaluating 
the electric field or the magnetic field at the center of an observation segment (a segment can 
be a wire segment or a surface patch) due to the basis function centered on another segment 
called the source segment. Figure 4.5 graphically depicts this process for a wire-to-wire 
interaction. 

Computation of each element of the interaction matrix is therefore accomplished in 
three steps: 

1 )  Defining a source segment (identified by index j) and computing some data 
related to that segment 

2) Defining an observation segment (identified by index i) and computing data 
related to that segment 

3) Finally, evaluating either the electric field or the magnetic field using the 
information obtained in the previous steps. 

The order in which the first two steps are taken differs depending on the submatrix 
that is being filled. 

In the sequential NEC program, the interaction matrix is filled inside a double DO- 
loop with index variables i and j, where i and j go from 1 to N (the total number of 
segments). Figure 4.6 show a block diagram for the sequential code. In the first DO-loop 
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compute E-field or H-field I on segment 1 

Figure 4.5. Interaction of wire segments i and j 

Input 6 Generate Data 

Figure 4.6. Sequential interaction matrix fill 

a source segment j is picked and the current expansion function on that segment and 
adjacent segments are computed. In the second DO-loop an observation segment i is 
picked and the electric field or magnetic field on that segment is computed depending on if 
it is a wire segment or a surface patch. Consequently, in row i, column j and columns 
corresponding to segments connected to segment j are filled. 
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In the parallel NEC program several nodes are used to fill the interaction matrix. 
Therefore, each processor is responsible for filling a part of the interaction matrix. To 
minimize communication between nodes and redundant storage of data, each node fills full 
rows of the interaction matrix. The rows are assigned to the hypercube nodes according to 
the chart shown in Figure 4.7, that is, for a hypercube with np nodes, node n will compute 
rows n, n+np , n+2*np , and so on. With this distribution scheme, if the number of rows 
is equal to a multiple of the number of nodes, all nodes will fill the same number of rows. 
Otherwise, some nodes will fill one more row than others. 

Two parallel codes are developed for the matrix fill. In the first code, called the 
Source Loop Sequential Code (SLSC), only the observation loop is computed in parallel. 
The data in the source loop is computed in the same way as in the sequential NEC program 
and therefore some redundant information is processed in the hypercube, which contributes 
to a reduction in the parallel code's efficiency. On the other hand, with this algorithm there 
is no need for the hypercube nodes to communicate with each other, which helps to 
improve the efficiency. A block diagram of the code with the sequential source loop is 
shown in Figure 4.8. Here, the program in each node is basically the same as in the 
sequential code except that in the observation loop the index i takes on different values 
depending on the node in which the code is running. 
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Figure 4.7. Assignment of rows to hypercube processors 
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The second code, called Source Loop Parallel Code (SLPC), is an extension of the 
source loop sequential program. A block diagram of this code is shown in Figure 4.9. 
Here, the observation loop is computed as for the SLSC, but to avoid processing redundant 
information, the source loop, as well as the observation loop, is made parallel. This is 
implemented only for wires because the source information for patches can be computed 
faster than it can be communicated at all times. In this program, each node will compute 
the source data for segments j=m, m+np, m+2*np , and so forth. Therefore, the data for 
all source segments is available but divided among all of the nodes. Hence, for a node to 
obtain the source data for all segments, it has to receive some of that data through 
communication channels from other nodes. For this purpose, the nodes are mapped into a 
one-dimensional periodic lattice (that is, a ring) (Figure 4.10). With this arrangement, 
each node can send or receive information from its two neighboring nodes only. The 
information flow is set to be counterclockwise and therefore node m will receive data from 
node m-1 but sends data to node m+l. 

To better describe the source loop parallel algorithm, consider the example shown 
on Figure 4.11. It is assumed that a problem with 6 segments is being computed by a 4- 
node hypercube. Now, we will observe node 1 at different times after the source loop is 
started at time to: 

- At time tl, node 1 computes source data for segment j=1. 

- At time t2, it sends data for j=l to node 2 and receives data for j=4 from node 4. 

- At time t3, it sends data for j=4 to node 2 and receives data for j=3 from node 4. 

- At time Q, it sends data for j=3 to node 2 and receives data for j=2 from node 4. 

- At time t5, all nodes, including node 1, compute the source data for segments j=5 

and j=6. 

As in the case above, if there is a remainder in the division of the number of 
segments by the number of nodes, the data for the remaining segments is computed 
sequentially. 
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Figure 4.9. Parallel source loop for the parallel interaction matrix fill program 
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Figure 4.10. Node arrangement for the source loop parallel program in a 
32-node hypercube 

3. Parallel Fill of the Excitation Vector 

NEC solves the matrix equation A*F=E, where the excitation vector E and 
the solution vector F have NT = N+2*M elements for an object modeled with N wires and 
M patches. For objects with no symmetry, the interaction matrix A is NT * NT. For an 
object with 1 symmetric subsections, A has N columns and NPEQ rows, where 
NPEQ=NT/I as discussed in Section IV.4. When the solution vector F is found, it is 
written over the E vector and so the parallel decomposition of E also determines the parallel 
decomposition of F. 

The parallel decomposition of the E fill is determined by the parallel decomposition 
of the matrix fill. For cases with no symmetry, the only restriction on E is that the ifh 
element of E be in the same node as the ith row of A so that the solution algorithm can 
proceed without the necessity of fetching the needed element of E from a different node. 
Thus, the elements of E are "dealt out" to the nodes as the rows of A were (see Section 
IV.C.2): the first element goes to the first node, the second element to the second node, and 
so on, returning to the first node after the np elements have been dealt. The deal proceeds 
until all elements of E have been distributed. 

For cases with symmetry, the distribution of E changes somewhat, although the 
parallel decomposition is still determined by the decomposition of A and the requirements 
of the solution algorithm. As discussed in Section IV.C, the code now solves 1 matrix 
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0 Assume number of segments to be: 

N = 6 ; J = 1 , 6  
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- Time t2 send data for J = [ 
- Time t3senddatafor J = 

- Time t4 send data for J = 

- Time t5 compute source segment data for J = 5 and 6 

Figure 4.1 1. Example of a parallel source loop algorithm on 4 nodes 
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equations of order NPEQ=NT /I, where 1 is the number of symmetric submatrices of A. In 
these cases, E is also composed of 1 symmetric subvectors of length NPEQ. The NPEQ 
rows of A have been distributed as in the case with no symmetry. Now, the I symmetric 
subvectors are distributed separately, always assigning the first element of the subvector to 
the first node, the second element of the subvector to the second node, etc., until the 
NPEQ elements have been distributed. In the end, the corresponding elements of each 
subvector of E are in the same node: elements 2, 2+NPEQ, 2+2*NPEQ are in the second 
node. The number of elements in each processor, then, is always a multiple of 1. Figure 
4.12 shows an example of decomposition of E for N segments and 3-fold symmetry. 

For cases with symmetry, E, as well as the interaction matrix A, is expanded into a 
discrete Fourier series immediately after it is filled. At the solution time the elements of A, 
E, and F are the coefficients of this expansion. Although the parallel decomposition of E is 
determined by the decomposition of A, this decomposition has the added feature that all of 
the elements of E which are needed to perform the discrete Fourier transform have been 
assigned to the same node. Thus, no internode communication was necessary to perform 
the discrete Fourier transform of E and, likewise, to perform the inverse discrete Fourier 
transform of the solution vector F. 
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Figure 4.12. Assignment of processors for an object with 3-fold symmetry 
and N segments 
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4.  Factorization and Solution 

a. Householder Transformation. The Householder transformation is 
one of the two techniques used for the factorization of the interaction matrix [4-21. This 
factorization method is well-suited to a parallel implementation because it operates on 
columns of the matrix where each column's set of computations is independent of the 
computations performed in the other columns. As the factorization progresses, the matrix 
is transformed into an upper right triangular matrix by a series of orthogonal 
transformations (Figure 4.13). The right-hand-side excitation vectors must undergo the 
same series of transformations at the time that the interaction matrix is transformed. In this 
way there is no need to store (or, for that matter, even explicitly compute) the 
transformation matrix. 

Because the Householder transformation algorithm works on columns of the A 
matrix, the data must be redistributed to the nodes by columns following the matrix fill. 
The Householder transformation consists of NPEQ transformations (where NPEQ is the 
number of rows in the interaction matrix). For the first transformation, the data in the first 
column is distributed to all nodes using a BROADCAST call. Each node uses this column 
to determine the new elements for its columns of what now becomes the "working matrix" 
as well as to determine its elements of the new factored matrix. At the conclusion of the 
first transformation, the interaction matrix contains new columns for columns two through 
column NPEQ of the working matrix; column one will no longer be active. In the second 

For matrix A (m,n), the Householder Transformation is: 

T A =  

where 
T is the orthogonal transformation matrix 
S k are the diagonal elements of the transformed matrix 
a i  are the transformed elements of the A matrix 

~~ ____ ~~ ~ ~ 

Figure 4.13. Householder transformation 
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transformation, the node which has column number two distributes it to all of the other 
nodes. Again each node computes the new elements for its active columns of the working 
matrix and its elements of the second row of the factored matrix. The transformation 
progresses, each time with one less active column, until NPEQ transformations have been 
performed and the complete upper right triangular matrix is constructed (Figure 4.14). 

In order to economize on storage, the newly computed factored matrix row 
elements overwrite the inactive portion of the working matrix (Figure 4.15). Since the 
elements are distributed among the nodes at the end of a transformation step, the data is 
combined and assembled in the node which will eventually do the solution for that row. 
This row assignment matches the earlier row assignment in CMSETN. At the end of each 
transformation, the newly calculated transformed elements of the excitation vector(s) are 
also replaced in the source nodes, again matching the earlier row assignments. At the 
conclusion of the factorization subroutine, HHNFACTR, the data is in position for the 
back substitution. 

b. Gaussian Elimination. The second technique used for factorization 
is a row variant of Gaussian elimination with partial pivoting (Figure 4.16) [Ref 4-31. 
This factorization technique produces upper and lower triangular matrices which must be 
solved using both forward and back substitution. With this algorithm the interaction matrix 
is distributed to the nodes by rows. Each node processes those rows for which it is 
responsible. 

The first task in each elimination step is to determine in which row (and therefore in 
which node) resides the maximum element (Figure 4.17). The maximum is first 
determined locally within each node. Then the nodes exchange maximum elements to 
determine which element is the global maximum. If the node which is responsible for that 
elimination step row does not have the maximum element, it must then exchange that row 
for the row which contains the maximum element. This process is called "partial pivoting." 
In the process of the exchange, which is completed via a global BROADCAST command, 
all nodes obtain a copy of the elimination row. This elimination row will be used as a ' 
multiplicand by all nodes as they next complete the remainder of the elimination step, now 
locally. 
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Figure 4.14. Upper right triangular matrix formed using the Householder transformation 
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F 
The factored matrix A after the kth Householder Transformation: 

T,A = : F  :F 
I 

To minimize storage, the A matrix columns are stored as rows. Then as factoring 
T F 

progresses the A and A are merged: 

T,A = 

Figure 4.15. Householder transformation after the kth transformation. AT 

is the working matrix which is discarded after the 
factorization. AF is the newly factored upper right triangular 
matrix. 

Although both factorization techniques are implemented and the user is given the 
option of selecting the technique to be used as an input parameter, the Gaussian elimination 
technique is the one generally chosen. The Gaussian elimination factorization currently 
runs a factor of about 4 times faster than the Householder transformation. It is conjectured 
that this may be due to the additional data reorganization that the Householder 
transformation technique requires. Both techniques are inherently order N3 operations. 
Further work is required to better understand the difference in the performance of the two 
algorithms. The relative performance statistics may change some when the NEC code runs 
using the Weitek daughter board floating point accelerator. 

4-25 



ROW k - 

ROW r - 

- ?  
I 

INTERCHANGEABLE 
ROWS 

- - - -  4 
LARGEST ABSOLUTE VALUE 

CHOOSE r AS THE SMALLEST INTEGER FOR WHICH 

AND THEN INTERCHANGE ROWS k AND r. 

Figure 4.16. Matrix factorization by Gaussian elimination 

c. Solution. The solution method depends on the method of 
factorization selected: for Householder transformation there is a back substitution for each 
right-hand-side excitation vector, and for Gaussian elimination there is both forward and 
back substitution for each excitation. Each node calculates the solution elements for the 
rows it is assigned. At the conclusion of the calculation of each row, the solution elements 
are broadcast to the other nodes. These solutions become multiplicands for subsequent 
steps of the solution. 

d. Numerical Green's Function. The factored interaction matrix may 
be stored in a file and used in subsequent solutions by taking advantage of the Numerical 
Green's Function (NGF). It is as though the free space Green's function in NEC is 
replaced by the Green's function for the scattering object which has been stored in a file. 
The NGF is used to model large structures where various components will be added as an 
iterative process in the course of the analysis. NGF is also useful when analyzing an object 
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Figure 4.17. Parallel factorization by Gaussian elimination 
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with partial symmetry. The symmetric portion can be solved on the initial run of NEC, 
thereby reducing the order of the matrix to be solved and therefore the computation time. 
The unsymmetric portions are then added on later runs. 

As implemented in NEC, the NGF does not permit incremental building of a 
structure. That is, all additions are recalculated in subsequent runs. Therefore, as the 
object grows, more and more computations are repeated. We are currently developing the 
capability to incrementally design an object by incorporating the new portion into the 
factored interaction matrix. Two techniques are being considered: a block Gaussian 
elimination algorithm and a matrix update by means of the Householder transformation. A 
third method is being investigated for cases where the number of modifications/additions 
are small relative to the overall structure. It is an iterative technique using the factored 
interaction matrix as a preconditioner. 

The development of the iterative NGF capability in NEC is particularly important 
because the implementation of the Concurrent Input/Output (CIO) system is now completed 
for the Mark 111 Hypercube. Currently there are four 300-megabyte disk drives attached to 
the 32-node hypercube, one drive per 8-node sub-cube. Four more disk drives will be 
added in the fall of 1988. The factored matrix is stored on disks in a distributed fashion by 
issuing a CIOWRITE command and restored to memory from the disks by a CIOREAD. 

There are three main branches to the parallel NEC code (Figure 4.18). In the 
normal mode, an execution flag, NGFLG, is set to zero, indicating that no NGF file will be 
read or written. If a user wishes to preserve the factored interaction matrix, the NGFLG is 
set to one and at the conclusion of the run the matrix and ancillary data are stored on the 
distributed disk drives. If a user wishes to modify an existing structure, then the NGFLG 
is set to mo, which instructs the program to retrieve, from the disk drives, the factored 
interaction matrix and ancillary data from a previous run. 

D. NUMERICALRESULTS 

The numerical results obtained from the parallel NEC have been checked with the 
results from the original sequential NEC-2 running on a VAX 11/750 and have shown 
excellent agreement. The results for three problems, where wires or patches, either 
separate or combined, are used, are discussed here. Also, examples are shown for 
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Return 
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I Write factored I 
matrix to disk 

substitution 

Return 
solution 

f 
Figure 4.18. Three main branches to the parallel NEC code 

validation of the code when the extended thin wire approximations or loading are 
employed. 

1. Monopole on a Pedestal Over Perfect Ground 

This problem is modeled by as many as 290 wire segments. The pedestal is 
modeled by several radial 2-wire sections (or ribs) as shown in Figure 4.19. Each wire, in 
turn, is divided into several segments. A quarter wave length monopole is placed at the 
center of the pedestal and is fed by a voltage source at the bottom. The far field radiation 
pattern of this monopole, in plane Q = 0, is shown, where @ and 0 are the standard 
azimuthal and polar angles in the spherical coordinate system. The solid line is from the 
sequential code, while the dots.show the results from the parallel code. To the precision of 
the respective machines, excellent agreement exists between the two codes. The bend in 
the pattern which can be noted is due to the presence of the pedestal. By increasing the 
number of ribs in the wire model, the effect of the pedestal will become more significant. 
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Parallel 
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dB 

Figure 4.19. Radiation pattern of a quarter wave monopole on a pedestal 
over perfect ground; Q = 0 cut. The structure is modeled by 
130 wire segments. 

2. Scattering of a Plane Wave by a Conducting Sphere 

The conducting sphere is modeled by patches only. In the example shown 
in Figure 4.20, the sphere is modeled by 80 patches without taking advantage of the 
symmetry. The incident field is a uniform plane wave traveling in the -x direction and is 
polarized in the -z direction. The far field scattering pattern of the sphere, for the plane 
Q = 0, is shown. The solid line shows the results from the sequential NEC code; while 
the dots show the results from the parallel code. As in the previous example, very good 
agreement exists. For this example ka = 3.0, where 

X = the plane wave wavelength, and 
a = the radius of the sphere. 
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Figure 4.20. Scattering pattern of a sphere with ka = 3.0 in the Q = 0 plane. 
The incident field is a plane wave traveling in -x direction. 
The sphere is modeled by 80 patches. 

3.  T Antenna on a Conducting Box Over Perfect Ground 

This problem is modeled by both patches and wires. The box is modeled 
by 12 patches and the T antenna by 8 wire segments. This is the same as in example 4 in 
the NEC manual [4-11. The T antenna is fed by a voltage source at the bottom. The 
radiation pattern of this antenna, for the Q = 0 plane, is shown in Figure 4.21. The solid 
line shows the results from the sequential NEC and the dots show the solution from the 
parallel NEC. 

4. Extended Thin Wire and Loading 

To demonstrate the effect of using the extended thin wire kernel and 
loading, the monopole on a pedestal structure of Section IV.D.l is employed. The 
structure is modeled by 70 segments. The radiation pattern of the monopole, for the Q = 0 
plane, is shown in Figure 4.22. Here, the solid line shows the results when thin perfectly 
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Figure 4.21. Radiation pattern of a T antenna on a box over perfect ground 
in the 4 = 0 plane 

conducting wires are used, dots represent the case of thin aluminum wire (loading), and the 
A marks show the solutions for the case when thick wire is used with the extended thin 
wire kernel. All of these fields are calculated by the parallel code, and excellent agreement 
with the sequential code is verified for every case. It can be noted that the effect of the 
pedestal on the pattern is less significant when a fewer number of ribs are used (10 ribs 
here compared to 15 ribs in the example shown in Figure 4.19). Also, use of the extended 
thin wire, even with a lower number of ribs, models the pedestal much more realistically 
than the thin wire kernel modeling of Section N.D. 1. This more realistic model is evident 
from the strong interaction of the fields with the pedestal shown by A marks in Figure 
4.22. 

E. PERFORMANCE 

To evaluate the performance of the NEC parallel program, one measure that can be 
used is the CPU time taken to run this code on the Mark I11 Hypercube compared with the 
time to run it on an VAX 11/750. Several parameters, such as the time taken to fill or 
factor the interaction matrix, and the speedup factor, are analyzed. 
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Figure 4.22. Radiation pattern of a monopole on a pedestal over perfect 
ground in the $ = 0 plane 

1 .  Timing 

To analyze the timing performance of the parallel NEC program, two 
examples are considered: 

a. Scattering by a SDhere. The sphere of Section IV.D.2 is modeled 
by 120 surface patches which do not use the symmetry option. The interaction matrix for 
this problem is of size 240 x 240. The times to fill and factor this interaction matrix, as 
well as the speedup factors, are shown in the tables of Figures 4.23 and 4.24, respectively, 
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DIMENSION OF NUMBER OF FILL TIME, 
CUBE NODES sec 

0 1 39.5 

1 2 19.8 

2 4 9.9 

3 8 5.0 

4 16 2.5 

5 32 1.3 

Figure 4.23. Time and speedup factor for filling the interaction matrix of a 
sphere modeled by 120 surface patches versus the dimension 
of the hypercube. The matrix size is 240 x 240. 

SPEEDUP 
FACTOR 

1 

2.0 

4.0 

7.9 

15.8 

30.4 

as a function of the number of nodes used in the hypercube. In this case, as with the other 
timing runs in this section, unless otherwise noted, the fill is performed using the Source 
Loop Parallel Code (SLPC) and the Gaussian elimination technique for factoring. 

The times taken to do the fill and the factor on one processor are 39.5 and 836.4 
sec., respectively, while the same times are 25.4 sec. and 895.2 sec. for the VAX 11/750 
computer. 

Generally the fill and the factor times total more than 90% of the overall time in the 
NEC sequential program. Therefore the time taken to process the input, to solve the 
factored matrix, and to compute the far or near fields is small when compared to the overall 
time. 

Currently the largest problem which can fit into one hypercube node is a modeled 
object requiring a total of 300 equations. This means that the limit is 300 wire segments or 
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DIMENSION OF NUMBER OF FACTOR TIME, 
CUBE NODES sec 

0 1 836.4 

1 2 423.3 

2 4 21 6.3 

3 8 113.0 

4 16 61.3 

5 32 36.5 

Figure 4.24. Time and speedup factor for factoring the interaction matrix of 

SPEEDUP 
FACTOR 

1 

2.0 

3.9 

7.4 

13.6 

22.9 

a sphere modeled by 120 surface patches versus the 
dimension of the hypercube. The matrix size is 240 x 240. 

150 patches unless the symmetry option is invoked. The largest problem that the VAX 
111750 can run contains 300 equations. The 32-node Mark 111 Hypercube can run cases in 
core which consist of up to 2400 equations. The 128-node hypercube will be able to 
double this number to 4800 equations. With the addition of the disk drives to the Mark I11 
Hypercube, out-of-core solutions can now be considered. With the 4 existing disk drives 

the maximum size problem which will be possible on the 32-node hypercube increases to 
about 10,OOO equations. 

b. MonoDole on a Pedestal. In this section, the monopole on a 
pedestal of the type described in Section IV.D.1 is modeled by 20 ribs and a total of 290 
segments. Therefore, the interaction matrix is of the size 290 x 290. The fill and factor 
times versus the number of nodes in use are shown in the tables of Figures 4.25 and 4.26, 
respectively. 
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FILL TIME, sec 

NUMBER 'SOURCE-LOOP SOURCE-LOOP DIMENSION 
OF CUBE OF SEQUENTIAL PARALLEL 

0 1 1725.0 1725.0 

1 2 876.0 91 5.3 

2 4 445.5 506.6 

3 8 230.3 292.6 

4 16 122.6 158.7 

5 32 68.8 81.5 

Figure 4.25. Time and speedup factor for filling the interaction matrix of the 
monopole on a pedestal versus the dimension of the hypercube. 
Results from source-loop parallel and source-loop sequential codes 
are shown. The matrix size is 290 x 290. 

SPEEDUP FACTOR 

SOURCE-LOOP SOURCE-LOOP 
SEQUENTIAL PARALLEL 

1 1 

2.0 1.9 

3.9 3.4 

7.5 5.9 

14.1 10.9 

25.1 21.2 

DIMENSION OF NUMBER OF FACTOR TIME, 
sec CUBE NODES 

0 1 1474 

1 2 750 

2 4 388 

3 8 205 

4 16 113 

5 32 69 

Figure 4.26. Factor time and speedup factor for the interaction matrix of 
the monopole on a pedestal versus the dimension of the cube. 
The matrix size is 290 x 290. 

SPEEDUP 
FACTOR 

1 

2.0 

3.8 

7.2 

13.0 

21.4 
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The speedup factors for filling and factoring the interaction matrix are plotted in 
Figure 4.27. The speedup factor is defined as: 

Time to run program on one node 
Time to run program on N nodes Speedup Factor = 

For this problem, the top speedup factor for 32 nodes is 21.2 for filling and 21.4 for 
factoring. 

For the fill time, the two parallel codes discussed in Section IV.C.2 are used. It is 
evident that for this problem, the source-loop sequential code is faster than the source-loop 
parallel code for any number of nodes used. For this example, processing of the 
information in the source loop takes less time than it takes to communicate that information 
to other nodes. The fill and factor times for the VAX 11/750 are 1808 sec. and 1771 sec., 
respectively. The fill time is very close to the time on one node because the parallel 
program for wires on one node is almost identical to the VAX sequential code. Additional 
data for timing and speedup factors for the 32-node Mark III Hypercube compared with 
those for the VAX 11/750 are shown in Tables 4.1 and 4.2. 

The speedup factors for filling and factoring the interaction matrix versus the 
number of nodes used in the hypercube are shown in Figure 4.28. These curves are almost 

- linear; however, the SLSC shows a better speedup factor across the range for the number 

of nodes than does the SLPC version. 

2. Fixed Problem 

When analyzing how a particular algorithm scales for different hypercube 
configurations, we need to keep the size of the problem fixed within a node. If the total 
problem size remains the same, the amount of work assigned to each processor decreases 
as the number of nodes in use increases. Consequently, as the number of nodes increases, 
the ratio of computation to communication decreases and the problem runs less efficiently. 
In other words, to run efficiently, it is important to keep the amount of computation high in 
each node. 
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Figure 4.27. Speedup factor for filling (using SLSC) and factoring (using Gaussian 
elimination) the interaction matrix for scattering by a monopole on a pedestal 
versus the number of nodes used. The matrix size is 290 x 290. 
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Table 4.1. Timings for the sphere scatterer 

Increase 

17.7 

18.1 

20.1 

21.1 
- 

- 
- 
- 

- 

Number 
of Patchez 

80 

120 

168 

224 

288 

360 

440 

528 

624 

VAX, 
sec 

260.5 

895.2 

2661.0 

6236.0 
- 

- 

- 
- 

- 

Number 

270 

VAX, 
min 

4.5 

15.3 

45.2 

105.5 
- 

- 
- 
- 

- 

Fill 
32-Node, 

sec 

Total 
32-Node, 

min 

0.2 

0.6 

1.6 

3.8 

7.3 

13.5 

24.2 

41.9 

68.2 

0.6 

1.4 

2.6 

4.5 

7.5 

11.9 

17.7 

25.6 

35.7 

Increase 

19.3 

21.5 

22.2 

25.1 

Total 
V U ,  32-Node, 
min min 

25.5 1.1 

32.4 1.3 

39.8 1.6 

49.4 1.8 

Factor 
32-Node, 

sec 

Increase 

28.8 

28.2 

29.2 

30.1 

27.2 

12.7 

36.5 

91.7 

209.7 

429.1 

798.6 

1431.6 

2486.6 

4056.2 

VAX, 
sec 

586.2 

817.6 

1078.9 

1423.6 

1771.1 

Increase 

20.5 

24.5 

29.0 

29.2 
- 
- 
- 
- 

- 

Table 4.2. Timings for the monopole on a pedestal problem 

~ 

943.4 

1125.5 

1307.1 

1541.8 

1807.6 

Fill 
32-Node, 
' s e c  

32.8 

39.9 

44.7 

51.2 

66.5 

I 

I 

Factor 
32-Node, 

sec 

30.4 

38.0 

48.7 

56.7 

InCreaSe 

20.4 

24.3 

28.8 

29.6 
- 

- 

- 
- 

- 

25.8 

24.9 

25.5 

27.5 

69.1 I 25.6 I 59.0 1 2.3 I 26.4 

To demonstrate how the FILL algorithm of the parallel NEC scaled with the size of 
the hypercube, the input data size is determined so that for each run all nodes receives 5000 
elements, that is 

2 n 
No. of Nodes = 5000 
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Figure 4.28. Speedup factor for filling and factoring the interaction matrix of the 
monopole on a pedestal versus the number of nodes used. Results from the 
source-loop parallel and source-loop sequential codes are shown for the 
matrix fill. The matrix size is 290 x 290. 
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As the number of elements in a row increases, the number of rows for which a 
node is responsible decreases. Figure 4.29 shows the results for the runs on the hypercube 
beginning with a dimension of 0 ( 1  node) and proceeding up to a dimension of 5 (32 
nodes). As the number of nodes increases, the parallel algorithm demonstrates excellent 
scalability. The slight increase in time required for the larger size hypercubes would be 
expected. The number of elements per node is the product of N (the number of elements in 
a row of the interaction matrix) and the number of rows in that node. During the fill there 
is an initial computation which is performed N times. As the number of rows per node 
decreases, the size of N increases and, as such, affects slightly the overall time. 

It is more difficult to analyze how the factor algorithm of the parallel NEC code 
scales with the size of the hypercube. One could construct a fixed case data set based on 
the fact that factorization algorithms are of order n3. However, as the number of elements 
in the overall matrix increases for larger hypercubes, so does the number of transformation 
or elimination steps required to perform the factorization. Each step is preceded by 
communication of the pivotal row or column data. The results from different sizes of 
hypercubes would thus be a comparison of problems with considerably different 
computation and communication requirements. 

3. Analysis of the Performance of Fill Algorithms 

In using the two parallel codes, it is observed that for the 290-segments 
monopole on a pedestal, the source-loop sequential code (SLSC) consistently achieved 
lower fill times than the source-loop parallel code (SLPC). Even though better times are 
obtained by SLSC for most of the examples that we have run throughout this study, there 
are many cases for which SLPC yields lower fill times. 

To understand this result better, we should study the source loop in more detail. As 
we discussed in Section IV.C.2, the source segment information is computed inside a DO- 
loop with index variable j, where j goes from 1 to N (the total number of segments). For 
problems where the structure is modeled by wires, the time to process this information can 
be substantial and therefore the SLPC was developed to communicate the data, instead of 
computing it sequentially in every node, as in the SLSC. For wire problems, each wire 
segment can be connected to several other segments as shown in Figure 4.30. In general, 
each segment can be connected to nseg number of other segments. Since the basis function 
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Figure 4.29. Scaling of the performance of the parallel fill algorithm where 
the problem size per node remains fixed at 5000 elements 
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Figure 4.30. General wire segment connection 

on each segment is extended over the adjacent segments, the number of local boundary 
equations to be solved for eliminating two out of three segments increases. In most 

problems, wire junctions have only 2 wires connected to them ("simple" junctions) and 
therefore source-loop information can be processed very fast without any need to use 
communication between nodes--SLSC should then be used. However, if a problem is 

modeled with multi-wire junctions, one has to look at the ratio of the number of these 
junctions to the number of simple junctions as well as the number of nodes used in the 
hypercube to select SLSC or SLPC. 
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For example, look at the monopole on the pedestal problem, which is modeled with 
a differing number of wire segments but always 20 ribs on the pedestal. Only one multi- 
wire junction with 21 segments is always present, and by changing the number of 
segments, only the number of simple junctions changes. These models were run on a 32- 
node hypercube, for maximum communication effect, and fill times obtained from SLSC 
and SLPC are plotted versus the total number of segments in the model, as shown in 
Figure 4.3 1. It can be seen that for a number of segments less than 90, the SLPC is faster. 
This speed is due to a relatively small number of simple junctions. As the number of 
segments is increased above 90, the number of simple junctions is increased and since, for 
these junctions, computing the source information is faster than communicating it, the 
SLSC yields better fi times. 

F. FUTUREPLANS 

There are three areas of emphasis in our current work on the method of moments 
code. The first is to implement an iterative Numerical Green's Function which has been 
described in Section IV.C.5. The ability to stepwise build and refine the design of an 
object by using previous calculations has now been made possible by the development of 
the Concurrent Input/Output system. Factored interaction matrices are archived in a 
distributed fashion on disk drives attached to the nodes. By having multiple disk drives, 
even large matrices (hundreds of megabytes in size) can be transferred to and from disk 
during the iterative design phase. 

A second area of effort which has been enabled by the addition of disk drives to the 
hypercube nodes is the incorporation of out-of-core solutions. The maximum problem size 
which can be computed on the 32-node hypercube will expand from 2400 equations to 
about 10,000 equations. With the ongoing development of the hypercube operating 
system, virtual memory capabilities will eventually automate out-of-core solutions. 

The third development which is under way is the parallel implementation of the 
output analysis routines. Up to this time these routines have run sequentially on the host 
computer, Counterpoint Control Processor, or on the Electromagnetic Interactive Analysis 
Workstation, a Sun 3/160. Because the time to perform the matrix computations has been 
dramatically reduced by the hypercube implementation, these sequential functions no longer 
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Figure 4.31. Time for the interaction matrix fill for a monopole on a 
pedestal versus the number of segments in the model for the 
source-loop parallel and source-loop sequential codes 

take 10% of the overall time as they once did in the sequential code. Extrapolating from a 
law put forth by Amdahl, it is essential to put into parallel all aspects of the computation so 
that the once insignificant sequential computations do not become the dominant time 
component. 
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SECTION V 

FINITE ELEMENT ANALYSIS 

A. DESCRIPTION OF THE METHOD 

1 . Application of Finite Elements to Electromagnetic Scattering 

The finite element method is used for the approximate solution of partial 
differential equations that arise in many engineering and scientific contexts [5- 13. As 
shown schematically in Figure 5.1, the method employs a spatial discretization of a 
continuous domain. In general, the domain is represented by a mesh of nodal points, and 
the polygonal (or polyhedral) regions delimited by this gridding are the elements, from 
which the finite element method derives its name. One of the principal strengths of the 
method is the ease and generality with which irregularly shaped domains can be treated, 
since elements of various shapes and sizes may be employed. 

We shall assume that the original mathematical statement of the problem takes the 
form of an elliptic partial differential equation. In the context of electromagnetic (EM) 
scattering, this differential equation is the Helmholtz equation describing the incident and 
scattered fields for a particular wave number, k. As a concrete example, we shall consider 

. the two-dimensional (2-d) scattering of an incident transverse electric (TE) polarized wave 
by an arbitrary 2-d body. In this case, the out-of-plane magnetic field HZ satisfies the 
Helmholtz equation: 

V -VH, + k  H,=O I: 1 * 
(5.1) 

where E is the relative permittivity and k is the wave number. In practice, this open region 

problem is solved within a finite domain through the introduction of an artificial far-field 
boundary condition. In the present work, we have adopted the approach of Bayliss and 
Turkel [5-21. A cylindrical artificial boundary is parameterized by radius p and angular 
coordinate 4. The boundary condition on scattered fields then becomes: 

2 
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Figure 5.1. The finite element method employs a discretized spatial domain 
for the approximate solution of boundary value problems. 
Unknown field quantities are defined at nodal points, and 
interaction matrix elements are derived by integration over 
finite elements. The discretization leads to a system of linear 
algebraic equations. 
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where A and B are p-dependent operators. 
approximation of these original equations. 

We turn now to the finite element 

The governing differential equation or so-called strung form can be shown to be 
equivalent to an integral variational weak form statement of the problem. In this particular 
case, the weak form is an integral equation of the form: 

where T is an arbitrary test function that satisfies certain continuity conditions. Equation 
(5.3) contains the unknown scattered H field in the left hand side, while the excitation term 
in the right hand side depends on the incident field through: 

F =  
(5.4) 

Next, this weak form is applied to the discretized finite element domain through the 
introduction of a set of approximate nodal basis functions. This discretization of the weak 
form results in a discrete set of unknown coefficients that are related by a system of linear 
algebraic equations. Thus, the finite element method involves the construction and solution 
of a matrix system whose rank is equal to the total number of unknown nodal degrees of 
freedom. 

The matrix which results from this finite element approximation is, in general, 
sparse, with an irregular clustering of non-zero elements near the diagonal. The particular 
structure and non-zero column profile of the stiflness matrix is dictated by the spatial 
connectivity of the problem domain. The matrix contains non-zero entries connecting only 
those degrees of freedom which share a common finite element in the domain 
discretization. This spatial locality results from the element-wise assembly of the stiffness 
matrix. Element-level matrix contributions are obtained by integration of basis functions 
over the volume of individual elements, which are in turn additively assembled into the 
global matrix. 
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The central computational task from a standpoint of cost is the solution of this 
matrix system. While the overall design and implementation of the supporting finite 
element software superstructure is also important, the emphasis of the work described here 
is on the equation solution task. In this and the following sections, methods for the 
efficient parallel solution of large finite element linear systems are described. 

2. Finite Elements in the Context of Parallel Processing 

As stated above, the principal computational cost associated with the finite 
element method is the solution of a large matrix system. The cost-effective implementation 
of this task (on either a sequential or parallel computer) requires a recognition of the special 
structure and properties of the finite element matrix, in contrast with the case of a general 
full matrix. One possible approach to the parallelization of a sparse matrix solver is to 
decompose (or break up) the task by matrix rows and columns. While this is a viable 

approach for some applications [5-31, it has disadvantages for finite element matrices. 

One of these disadvantages is the inherent irregularity of the non-zero matrix element 
profile, which arises from the ability of the finite element method to treat geometrically 
complex grids. This irregularity complicates the problems associated with efficiently 
programming a row/column decomposition and maintaining an even work load balance 
among the parallel processors. A perhaps more obvious disadvantage is the relatively large 
amount of interprocessor data communication required to perform operations on rows and 
columns that reside in different processors. (While this problem is most apparent in a 
distributed memory concurrent architecture, it can also manifest itself in shared memory 
machines in the form of memory access conflicts.) 

In the present research, we utilize a domain decomposition approach, which divides 
up the problem in the physical domain space, rather than in the abstract "matrix world." 
The meaning of domain decomposition in the current context is illustrated in Figure 5.2. 
Contiguous spatial subdomains of finite elements are assigned to the distinct processor 
nodes of a multiprocessor computer. We need to be somewhat more specific, however, 
about what is meant by "assignment." Our machine model for decompositions of this kind 
is based upon large-node, distributed memory architectures like that of most hypercube 
multicomputers. In this model, all the information relevant to nodal degrees of freedom or 

5-4 



.. 

Figure 5.2. Domain decomposition divides the finite element grid into 
subdomains assigned to different processors. Elements are the 
exclusive responsibility of a single processor, while some 
nodal points (open) are shared between processors. 

matrix elements resides in the local memory of the processor corresponding to the given 
subdomain. A given processor has direct access only to its "own" information and can be 
thought of as solving a smaller version of the original full problem, subject to some special 
boundary conditions. Interprocessor communication is invoked in order to exchange this 
"boundary" information and obtain a global solution. 
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Examining the finite element decomposition in more detail, we see that elements 
become the exclusive responsibility of exactly one processor. While nodal point 
information is also distributed among processors, it is seen that some nodal points fall on 
boundaries and are in some sense shared by two or more processors. In such cases, it is 
necessary to devise a bookkeeping scheme to ensure consistent treatment of these degrees 
of freedom. A detailed description of the programming used to accomplish this 
management is beyond the scope of the present report, but has been described elsewhere 
[5-41. For the purposes of the present discussion, it is sufficient to say that the data 
structures and constructs needed to keep track of processor assignments fit naturally within 
the same structures used in "traditional" finite element applications to manage different 
element types and material property variations. It is only necessary in this context to 
assume that any pair of processors in the concurrent computer can exchange "packets" of 
communicated data via a kind of "mail" system. In the case of the hypercube computer 
operating in the "crystalline" or polled communication environment, this functionality is 
achieved through routed message passing (the so-called Crystal Router [5-31) and can be 
regarded as a transparent "operating system" task. 

This domain decomposition approach to parallel finite elements considerably 
lessens the interprocessor communication load over a row/column decomposition. In this 
case, communication becomes essentially an edge effect, the relative magnitude of which 
diminishes with increasing problem size as the domain perimeter-to-area ratio decreases. 
Because of the spatial locality of the finite element matrix elements, only those elements 
spatially adjacent to a processor subdomain boundary need be involved in communication 
activity. 

Having discussed the rationale for domain decomposition, we turn next to the 
particular linear algebraic methods used to solve the matrix system. One common and well- 
understood approach to the solution of large linear systems is direct elimination. Variants 
of Gaussian elimination which exploit the limited non-zero column height of the sparse 
finite element matrix are widely used. Useful because of their comparative robustness and 
cost-predictability, direct elimination methods can be prohibitively expensive for systems of 
large rank and bandwidth, such as arise from large three-dimensional domains. It is 
possible to adapt such methods to a domain-decomposed parallel setting by treating the 
subdomains as "substructures" which interact through their mutually shared boundary 
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nodes. Gaussian elimination may be employed concurrently within each processor to 
eliminate the interior (non-shared) degrees of freedom. Interprocessor communication of 
the remaining (potentially large) boundary matrix would then ensue, allowing for the 
subsequent elimination of the remaining shared nodal values. 

An alternative approach to linear equation solving which also employs domain 
decomposition is the use of iterative methods. Iterative solvers (e.g., the conjugate 
gradient method) proceed by iterative improvement through a succession of approximations 
toward an ultimate solution. A good deal of previous work has gone into study of such 
methods for parallel implementation because of two considerations. Firstly, the 
computational cost (per iteration) of such methods increases much less rapidly with 
increasing domain size than is the case for direct methods. Secondly, the iterative methods 
are most amenable to domain decomposition, requiring only minimal communication of 
boundary information between processors. For these reasons, the work described here has 
initially focused on iterative methods, although in some applications, direct or 
direcviterative hybrid methods may prove useful. 

Another issue which arises in the consideration of direct vs. iterative solvers is the 
ability to efficiently solve for multiple right-hand sides (excitations). This is an issue of 
some importance in EM scattering applications, in which it is often desirable to 
systematically examine a range of incident field parameters using the same matrix. 
Although direct factorization / backsubstitution methods have been historically used for the 
multiple excitation problem, it has been shown [5-51 that the conjugate gradient method can 
be formulated to efficiently solve for multiple right-hand sides as well. These questions 
are among those designated for examination in the near future. 

Unfortunately, iterative methods are not particularly robust, in the sense that their 
convergence properties are highly problem-dependent and difficult to guarantee with any 
single preconditioner. For this reason, the performance of these methods independent of 
parallel processing issues should be ascertained prior to attempting their routine application 
to a particular class of problems. The following subsections take up the application of the 
method of conjugate gradients (and derivatives thereof) to the solution of linear systems of 
complex equations. 
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3.  Solution by the Conjugate Gradient Method 

As shown above, applying the finite element method to EM scattering situations 
results in the linear system of equations Ax = b. The coefficient matrix A is usually a 
sparse, large matrix within the finite element approximation, resulting in the need to use 
specialized methods of solution suited for this situation. Direct methods, such as Gaussian 
elimination, are most suitable and effective for relatively small-scale problems. As we 
have seen, however, as the size of the matrix increases, storage and computation costs 
become excessive, and it becomes necessary to consider iterative methods. The following 
is a detailed description of one such important method, the method of conjugate gradients. 

Within the family of gradient methods, the process of solving a set of simultaneous 
equations is equivalent to that of finding the position of the minimum for an error function 
defined over an N-dimensional space (N being the order of the matrix). In each step of a 
gradient method, a trial set of values for the variables is used to generate a new set 
corresponding to a hopefully lower value of the error function. The natural error function 
is the square of the norm of the residual at each step, dk) = b-Ax(k). The best known 
gradient method is the steepest descent method, in which the search direction at the kth step 
is chosen to be the direction of the maximum gradient of the error function at the point x*). 
It has been established [5-61 that the steepest descent method suffers from the following 
drawback: the method will perform many small steps in going down a long, narrow valley, 
even if the valley is a perfect quadratic form. 

In the method of conjugate gradients [5-61 , designed to overcome this difficulty, 
the direction vectors are chosen to be a set of vectors representing, as nearly as possible, 
the directions of steepest descent of the points ~(01, x(l), ..., but with the overriding 
condition that they be mutually conjugate. Here the term conjugate means that the vectors 
are orthogonal with respect to the inner product weighted by matrix A. The basic 
algorithm, assuming a real, symmetric, and sign-definite matrix A, is given by the 
following set of equations: 
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0. Define fork = 0 
(0) Initial Guess: x 

Initial Residual: r(O) = b - A x 

Search Direction: p - 

(0) 

(0) - ,(O) 

6. k+k+l ,gotos tep  1. 

Because of the orthogonal relationship, the exact solution is obtained after exactly 
N steps for infinite machine accuracy; the method should not, strictly speaking, be 
classified as iterative. It cannot be assumed, however, that convergence will always be 
obtained after exactly N steps. In some cases convergence to an acceptable accuracy will 

be obtained after less than N steps, while in other cases rounding errors or intrinsic ill- 
conditioning of the problem at hand will affect the computation to such an extent that more 
than N steps will need to be performed. For these reasons the conjugate gradient method 
is treated and programmed as an iterative method. The various numerical approaches to 
large-size matrices occurring in EM scattering have been reviewed by Sarkar [5-71 and Van 
den Berg [5-81. The use of the conjugate gradient method in parallel processing finite 
element applications has been demonstrated recently by Fox [5-31, Nour-Omid [5-lo], and 
collaborators. 

Another problem arises when the matrix A is not real or symmetric (the matrix is 
complex in our EM scattering problem). To reduce the problem to the required conditions, 
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Peterson and Mittra [5-91 describe a modified conjugate gradient algorithm, in which the 
original matrix A is multiplied by its adjoint, resulting in an algorithm in which the matrix 
A appears not linearly, as in the original formulation, but quadratically. This creates a 
serious problem for ill-conditioned matrices, for which the condition number is large: the 
condition number of the matrix ATA is the square of that of the original matrix! 

4. Extensions of the Conjugate Gradient Method 

An important issue related to iterative methods is to understand and 
improve their rate of convergence. While the iterative approach permits us to tolerate loss 
of orthogonality, it does make the issue of rate of convergence critically important because 
it suggests a hopelessly slow rate of convergence for ill-conditioned problems. An 
important way around this difficulty is to precondition the matrix A. This refers to finding 
a nonsingular symmetric (or self-adjoint in the complex case) matrix C such that A = 
C-1AC-1 has improved conditioning. We can then apply the conjugate gradient (with 
improved convergence) to the transformed system 

where x = C-lx' and b' = C-1b. With C-1 being the approximate inverse of the original 
matrix A, the coefficient matrix C-1A of the modified system C-lAx = C-lb is very close to 
the identity matrix, and hence will have eigenvalues much more closely clustered than those 
of the original matrix A. For problems in which the conditioning number of the original 
system is too high, this can result in significant reduction in the conditioning number of the 
problem and, subsequently, improvement in the convergence rate. One of the commonly 
used preconditioners is diagonal scaling, in which the matrix C consists of the square roots 
of the diagonal elements of the original matrix A. This causes the elements of the 
transformed A to be of the order of unity, corresponding to a much smaller condition 
number and faster convergence of the conjugate gradient iteration scheme. 

Another important situation occurs when the coefficient matrix A is not real, 
symmetric, and sign-definite at the same time. This is the case in our problem, in which 
many of the coefficients are complex. When applying preconditioned conjugate gradient 
methods to complex systems, there are several approaches that could be used. The 
variables could be split up into their real and imaginary components to generate a real 
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system of twice the size. It is preferable, however, to work with complex quantities 
directly. The preconditioned system obtained will consist of complex equations. The 
‘best’ approach is to develop a version of conjugate gradients applicable to complex 
systems of equations. The method of bi-conjugate gradients was developed for non- 
symmetric, indefinite systems. The algorithm, developed by Jacobs [5-111, is given by 

0. Define fork = 0 
(0) Initial Guess: x 

Initial Residual: r(’) = b - A x 

Initial Bi-residual: r = r 
Search Direction: p - 
Search Bi-direction: p = r 

(0) 

- (0) (0) * 
(0) - r(ol 
- (0) - (0) 

- (k+l) - (k+l) * 
= r + p k p  ’) P 

6. k + k+l,  go to step 1 

where the superscript T denotes the transpose of the vector or matrix of complex conjugate 
elements, the inner product of two vectors is given by x-y = xTy, and * denotes the 
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complex conjugate. It should be noted that the update and direction coefficients are now 
complex coefficients, and that the dimensionality of the residual vectors and of the search 
directions is now effectively doubled, resulting in more degrees of freedom for solving the 
problem. This is compared and contrasted with Peterson and Mittra [5-91, in whose 
algorithm these coefficients are real, and the possibly ill-conditioned matrix A appears 
quadratically. 

Other features of the bi-conjugate gradient method are: 1 )  When no loss occurs in 
the dielectric scatterer, the complex matrix A becomes real. The problem is still complex, 
however, because of complex terms in the right-hand-side excitation (the forcing term F in 
Eq. (5.4)). 2) The coefficient matrix A in our electromagnetic scattering problem is 
complex symmetric. In this case the bi-residuals and bi-directions are the complex 
conjugates of the original respective quantities. This symmetry property can be utilized to 
reduce the number of arithmetic operations per iteration, as it is not necessary to implement 
the full algorithm. 

Finally, we note that the best results can be expected when one uses the 
preconditioned bi-conjugate gradient (PBCG) method, in which both approaches are put at 
work simultaneously. This will be demonstrated below. 

B . INITIAL RESULTS FOR TWO-DIMENSIONAL SCATTERING 

1 .  Description of the Problem 

A simple 2-d test problem was selected for the initial investigation of the 
finite element solution methods outlined in the previous section. Since these initial 
calculations were aimed at evaluating the algorithms prior to their parallel implementation 
on the hypercube, the test problem is comparatively small and runs quickly on a 
conventional sequential processor. This employment of a scaled-down test grid provides a 
good test of various iterative methods relative to one another, since the basic finite element 
structure is embodied in the test grid. The absolute comparison of this example with direct 
elimination results is not as straightforward, however, because the cost advantages of 
iterative methods are generally realized only in larger problems. 

The test case under consideration is illustrated in Figure 5.3. A dielectric circular 
cylinder of radius h/4 is modeled by a mesh of triangular patch elements. A free space 
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c cylinder 
(E = 5.0 ; p = 0.25 h) 

Figure 5.3. Finite element grid of the 2-d cylinder test problem domain. 
Grid is composed of 193 nodal points at which field quantities 
are evaluated and 344 triangular finite elements (or patches). 
The case calculated is scattering from a lossless dielectric 
cylinder, although more general geometries and scatterer 
properties are handled by the present program. 

region with an artificial boundary radius of 0.41 h surrounds the scatterer. While the finite 
element code is capable of as easily modeling more irregular geometries, this simple case 
provides an adequate technique evaluation benchmark. 

The grid is composed of 193 nodal points comprising 344 elements. An incident 
TE-polarized plane wave of wavelength h defines the excitation. In the particular case 
considered here, the permittivity of the dielectric is a real number (5.0), corresponding to a 
lossless scatterer. This case is considered representative of typical calculations, although it 
should be noted that different permittivity values somewhat alter the finite element matrix, 
having a noticeable effect in some cases on the rate of convergence of iterative solvers. 
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2. Solution Methods 

The finite element calculation described here breaks down naturally into four 
tasks: 1) formation of the left-hand-side matrix elements, 2) formation of the right-hand- 
side excitation vector, 3) the actual solution of the linear system, and 4) calculation of the 
scattering cross-section from the resultant fields. Of these tasks, l), 2), and 4) have been 
implemented essentially without any change from their usual formulations. The matrix is 
formed using geometric information about the grid and element permittivities, while the 
excitation is derived from the assumed incident field(s). In the present work, only the 
solution task 3) is novel, and the subsequent discussion centers on this task. 

The following iterative schemes were employed in succession to the above- 
described problem: 1) simple conjugate gradient (CG) applied to the complex case [5-91, 
2) preconditioned conjugate gradient with diagonal scaling (PCG), 3) the bi-conjugate 
gradient (BCG) method, and finally 4) preconditioned (diagonally scaled) bi-conjugate 

gradient (PBCG). The programming required to implement these solvers is quite 
straightforward, as outlined below. 

In each of these conjugate gradient variants, the coefficient matrix A is involved 
strictly in multiplicative operations of the form Ax, where x is an N-vector. Because of this 
fact, it is sufficient to store the matrix in the form of separate (unassembled) element 
submatrices, and multiplications are accomplished by a simple linear combination of small 
element contributions. This strategy simplifies implementation of the conjugate gradient 
method in sequential as well as parallel applications. For any one of the four specific 
solvers listed above, it is necessary to define the N-vectors (containing residuals, search 
directions, etc.) used for the particular algorithm, and then program the corresponding 
sequence of scalar and matrix-vector products. In the case of the two diagonally 
preconditioned methods, two additional computational steps intervene. Prior to beginning 
the iterations, the matrix A and right-hand-side are rescaled appropriately by the diagonal 
elements of the original system. Following completion of the iterations, the resultant 
solution must be scaled back again to yield the solution originally sought. 

In applying these conjugate gradient methods for a comparative benchmark test, it 
was necessary to define a uniform convergence criterion. This criterion was chosen as that 
number of iterations required to obtain a solution which differed negligibly from the 
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solution of the same system obtained by Gaussian elimination. In practice, this amounted 
to reducing the Euclidean norm of the initial residual vector by a factor of approximately 
10-5. The performance results obtained in each of these cases are discussed in the next 
subsection. 

3 .  Comparative Performance of Solution Methods 

As mentioned above, the test case used in this report is that of TE-wave 
scattering from a dielectric cylinder. The finite element code for this situation, generalized 
to the case of a 2-d body with an arbitrary cross section, and followed by solving the 
system of resulting linear equations by Gaussian elimination, was kindly provided to us by 
Dr. A. F. Peterson [5-141. Our initial effort has centered on replacing the Gaussian 
elimination solver by a variety of conjugate gradient solvers, anticipating that some 
member(s) of this family will be the natural candidate for solving larger-scale problems by 
parallel processing. 

The convergence rates for the four different conjugate gradients used so far are 
illustrated in Figure 5.4, in which the relative residual norm is plotted as a function of the 
number of iterations. It is seen that the CG algorithm presented by Peterson and Mittra [5- 
91, and based on extending the basic formulation for real, symmetric, and sign-definite 
matrices, converges too slowly in comparison with the theoretical limit of no more than 
about 200 iterations. The reason for this is that we deal with a complex, possibly poorly 
conditioned, matrix. The next step was to apply diagonal preconditioning [5-121, which 
improved the convergence dramatically, bringing the rate down to the upper theoretical limit 
for the CG algorithm. 

Further substantial improvement resulted from realizing that for a complex matrix 
we need a reformulated algorithm, which is provided by the bi-conjugate gradient method. 
We used the formulation provided by Jacobs [5-113 and recently used by Smith, Peterson, 
and Mittra [5-171. The last two curves in Figure 5-4 show that the use of bi-conjugate 
gradients provides convergence rates of the quality of those reported by Peterson and Mittra 
[5-91 in their case studies involving smaller fully populated matrices resulting from the use 
of the method of moments. For the two bi-conjugate gradient versions (BCG and PBCG) 
we used both the full Jacobs algorithm [5-111 for a general complex matrix, and a 
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simplified algorithm for a complex symmetric matrix, resulting in the cutting by half of the 
number of matrix-vector multiplications per iteration and, respectively, the speeding up of 
the calculation by nearly a factor of two. The question is still open whether the use of non- 
diagonal preconditioning might further improve the convergence rate of bi-conjugate 
gradients. In this context we note that preconditioned conjugate gradients have been 
recently applied [5- 15 J to problems of frequency selective surfaces and scattering from 
dielectric cylinders (more precisely, a TM-polarized wave scattered from a square cylinder). 
The nature of the improvement of the convergence rate due to preconditioning is similar to 
ours, but further study is required to compare the two studies and explore the possibilities 
of non-diagonal preconditioning. 

Compared with direct Gaussian elimination, the diagonal PBCG method still takes 
three times longer to converge than direct Gaussian elimination does. However, it is 
expected that with more complicated situations, in general, and with 3-d scattering, in 
particular, the additional effort and computation costs associated with iterative methods will 
increase much more gradually than indicated by experience with direct methods. This has 
been our major motivation for exploring the different conjugate gradient variants. 

C. PLANS FOR FUTURE WORK 

1. Parallel Program Development 

The next immediate goal of the finite element analysis task is the 
implementation of the above-described results on the hypercube computer. The principal 
areas of effort in this near-tern work involve construction of the parallel finite element code 
proper, and the development of input decomposition tools that will serve as the "front end" 
to the finite element code. The issues associated with these developments are discussed 
below. 

Much of the "superstructure" finite element programming needed for the hypercube 
code is directly transferable from already completed work in finite element stress/strain 
analysis [5-41. Only those parts of the programming uniquely related to the 
electromagnetics application will require extensive rewriting. Routed crystalline 
communications will be used to implement the various conjugate gradient methods in 
parallel. The parallel efficiency of these iterative approaches with domain decomposition 
has been well documented already [5-31, and is not considered a central issue at this stage. 
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It is to be expected that finite element calculations with concurrent efficiencies exceeding 
90% for reasonable problem sizes will be realized. Of more direct interest are questions 
associated with accelerating the iterative solution procedure, and with facilitating the 
problem decomposition process. 

Augmentation of the conjugate gradient methods described above by 
preconditioning will form an important part of the next year's work. A variety of non- 
diagonal preconditioning approaches [5- 131 are currently being examined for parallel 
implementation. In addition to work on preconditioning, work will be devoted to 
departures from the basic conjugate gradient formulation. One such generalization is the 
modification to allow solution of multiple excitations efficiently, as described earlier in 
Section V.A. Another area of considerable interest is the departure from a purely iterative 
scheme for hybrid direct / iterative methods. Previous work in hypercube finite element 
stress analysis suggests that combining Gaussian elimination on subdomain interiors with 
conjugate gradient iteration on interprocessor boundaries can accrue many of the benefits of 

both direct and iterative solvers. Extension of these hybrid techniques to the complex 
electromagnetics setting represents an important priority following development and 
demonstration of the basic parallel iterative code. 

Input decomposition represents the other important area for research and 
development in the next year. Among the desiderata in a concurrent finite element analysis 
package is a near-transparency at the user level to the fact that the problem is decomposed. 
This implies a certain amount of automation (or at least computer aid) in the decomposition 
process. While "carving up" the domain for decomposition is a conceptually fairly simple 
process, doing so rapidly and optimally may be difficult in practice. Our approach in the 
next year will be to integrate the domain decomposition process with the grid generation 
task. Processor subdomain assignment information is easily and naturally couched within 
the already existing conventions for finite element mesh definition. The development of 
basic graphical tools for the on-screen interactive definition of decomposition subdomains 
will represent a significant advance in this regard, eliminating the necessity to decompose 
conventional finite element input data "by hand.'' 
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2. Proposed Test Problems 

As just discussed, the main thrust in the immediate future will be to 
complete the test case currently under way. However, a number of additional test problems 
come to mind and will be addressed as this stage of the investigation nears completion. A 
particularly interesting problem is that of scattering from a conducting cylinder with a 
dielectric coating. This problem has been treated analytically in the last two decades [5-181, 
and some of these analytic results will need to be recoded, so as to provide numerical 
comparison with the finite element results to be provided by us. Recent numerical 
approaches to this problem are those of Jeng and Chen [5-201 and of Jin and Liepa [5-211. 
The first study uses a fundamental variational principle to derive a hybrid element method. 
The second uses an external boundary very close to the scatterer and follows its shape. 
Both the analytic and numerical results will be used as test cases for our parallel code. 

Some recent studies in EM wave scattering include some new ideas which will need 
some examination on our part. One such approach, that of using boundary elements [5- 
221, is a flexible variant of the finite element method. Another approach, that of using on- 
surface boundary conditions, allows the external artificial boundary to shrink all the way to 
the surface of the scatterer [5-231. This approach has been successfully used for simple 
geometric shapes, and one of its limitations has been the requirement of a convex scatterer. 

In a recent study Peterson [5-161 has performed a comparative study of three 
different methods for TE-wave scattering from inhomogeneous dielectric cylinders. The 
first method is based on a volume discretization of a magnetic field integral equation [5-241. 
The second method is a volume discretization of a differential equation formulation 
incorporating a "near field" radiation condition of the Bayliss-Turkel type [5-21, and is the 
method used by us in our test case. The third method is a hybrid procedure combining the 
discretization of a volume differential equation and a surface integral equation. Peterson 
finds that the methods incorporating differential equations have significant computational 
advantages in terms of storage over volume integral formulations. In addition, the hybrid 
approach requires less storage than the pure differential equation method, but may suffer 
from uniqueness problems for electrically large scatterers. It will be important to verify 
these conclusions in the context of parallel computation, especially comparing the hybrid 
method with the pure differential equation method currently used by us. 
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In summary, the purpose of first implementing the parallel 2-d code, which is now 
nearing completion, is to provide the essential background for formulating and 
implementing the more important, and considerably more complicated, three-dimensional 
scattering parallel code. Our intent is to consider specifically a coated conductor, where the 
coating can be a dielectric or magnetic material, possibly inhomogeneous, anisotropic, and 
lossy. With some of these cases currently available in a sequential, three-dimensional finite 
element code [5-251, our purpose is to combine these results with our currently gained 
insights of the parallel problem structure, leading to the formulation and construction of a 
parallel three-dimensional finite element scattering analysis code. 
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SECTION VI 

TEST CASE: SCATTERING FROM A CONDUCTING SPHERE 

A. DESCRIPTION OF THE TEST CASE 

In this section we present results from both the parallel Numerical Electromagnetics 
Code (NEE) and the parallel Finite Difference Time Domain (FDTD) code for the test case. 
The test case is scattering from a perfectly conducting sphere. We compare two 
components of the near scattered fields, two far electric field components, and the bistatic 
radar cross section (RCS). We also compare these results to the analytic solution. 

The test case is a conducting sphere with a diameter equal to the wavelength of the 
incident plane wave radiation. The incident plane wave has a frequency equal to 300 MHz. 
The incident plane wave has a wavelength of 0.99933 m and a wave number of 6.2874 
rad/m. These parameters produce a sphere with a radius of 0.49967 m. Ka, the wave 
number of the incident field times the radius of the spherical scatterer, equals 3.1415927. 

Since the scatterer is symmetric with respect to the origin, we arbitrarily choose the 
incident field to propagate from the -y direction to the +y direction. The incident electric 
field points in the +z direction with a magnitude equal to 1 .O V/m. The incident magnetic 
field points in the +x direction with a magnitude equal to 1/376.7303 A/m. 

B .  RESULTS AND COMPARISONS 

1. Test Case Using the Finite Difference Time Domain Code 

To model the sphere in the FDTD code, we break up the sphere into 
conducting cubic cells. Sixty cells span the diameter of the sphere. The FDTD code 
replaces the smooth spherical surface with protruding cubic shapes. We also model the 
empty space surrounding the conducting sphere with these cubic cells. The program marks 
unit cells with centers within the radius of the sphere as part of the scatterer. Unit cells 
with centers outside the spherk radius are part of the vacuum. We use 80 x 80 x 80 unit 
cells to discretize the computation space. We use 60 x 60 x 60 cells to enclose the spherical 
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scatterer. With these parameters, the unit cell size is 0.016656 x 0.016656 x 0.016656 m 
and the global lattice size is 1.3324 x 1.3324 x 1.3324 m. 

For this problem the Courant condition determines 120 iterations per cycle of the 
incident field. Therefore, time increments 0.02778 nsec per time step iteration. To 
determine the convergence of the FDTD code, we observe the monostatic RCS. This value 
is the radar cross section observed from the direction of the plane wave source. Figure 6.1 
shows the value of the monostatic RCS as a function of the iteration count. From this plot, 
we observe that after -900 iterations the near scattered fields achieve steady state. When 
the near fields achieve steady state, the value of the monostatic RCS is approximately 
0.677 m2. 

2. Test Case Using the Numerical Electromagnetics Code 

To model the spherical scatterer in NEC, we build an eighth of a unit 
sphere and then use the scaling option in NEC to create the proper radius and the 
symmetry option in NEC to build the complete scatterer. The scaling option multiples all 
lengths by a user-specified constant value. The symmetry option reflects the eighth of a 
unit sphere through three planes passing through the origin and perpendicular to the 
Cartesian coordinate axes. We enter the scaling option using the GS card in NEC. We use 
the GX card to enter symmetry options. For the eighth of the spherical scatterer, we use 
arbitrarily shaped surface patches to construct the object. We constructed this scatterer 
using the structure editor module in the Electromagnetic Interactive Analysis Workstation 
(EIAW). Figure 7.5 in Section VI1 shows the construction commands for PATRAN. 
Figure 7.6 shows the arrangements of the sixty surface patches for the eighth of the 
spherical scatterer. Figure 7.8 shows a portion of the geometry section of a NEC input file 
specifying the sphere [6-11. 

We use the card editor module of the EIAW to place the incident field excitation in 
the NEC input file. The parameters for the direction and polarization of the incident field 
are the following: 8, the angle off the z axis, equals 900 degrees; 4, the angle off the x axis, 

equals 2700; and q, the angle off the 8 vector, equals 1800. We used this same field in the 
FDTD run. 

A 
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Figure 6.1. Plot of the monostatic radar cross section versus the number of 
iterations. Each iteration is 0.0278 nsec. 

Compared with the 0.677 m2 value for the monostatic RCS from the FDTD code, 
the NEC code gives a value of -1.74 dB or 0.6699 m2. 

3. Test Case Using the Exact Solution 

We attribute the exact solution for the spherical scatterer to D. Mie [6-21. 

The solution uses spherical wave functions and boundary value techniques to find the terms 
of the resultant Mie series for the scattered field. A detailed mathematical discussion of the 
solution can be found in Ruck et al. [6-31 or Bowman et al. [6-41. 

Dr. Sembiam Rengarajan from California State University Northridge furnished a 
FORTRAN code for the evaluation of the series. The code only generates scattered near 
fields. The code was tested by comparison with near field plots in [6-41. 

Compared with the 0.677 m2 value from the FDTD code and with the 0.6699 m2 
value from the NEC code, the monostatic RCS from exact solutions is 0.6667 m2 [6-31. 
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The percent difference between the exact RCS and the RCS from the NEC code is 0.47%. 
The percent difference between the exact RCS and the RCS from the FDTD code is 1.03%. 

4.  Contour Plots of Different Fields for the Spherical Scatterer 

Thce following figures shows sets of plots obtained from the NEC, FDTD, 
and analytic codes. Figures produced by the NEC code and FDTD code appear together. 
Figures produced by the analytic code follow the NEC and FDTD results. Figures 6.2 
through 6.7 show contour plots for the magnitude and phase of the z component of the 
scattered electric field. Figures 6.8 through 6.13 show contour plots for the magnitude and 
phase of the x component of the scattered magnetic field. These near field values occur in a 
plane in front of the spherical scatterer at y = -0.6162556 m. Figures 6.14 and 6.15 give 
contour plots of Eo and Eg for NEC and FDTD codes only. These fields do not include the 
radial dependent term eib/r. K is the wave number of the incident field and r is the radial 

distance from the origin at the center of the spherical scatterer. Figure 6.16 shows the 
bistatic RCS for NEC and FDTD codes. 

Because the fields produced by the three codes may differ in phase by some 
constant angle, we freely shift all phase values produced by a single code by the same 
constant. This shift produces plots for easier comparison. For the following near field 
plots we shifted the phase values from NEC by -270 and the phase values from the analytic 
code by 1550. 

5 .  Discussion of Results 

NEC compares well with the analytic code in both magnitude and phase for 
the near scattered fields. However, the FDTD code has slightly differing field values for 
magnitude and phase. We can trace the difference in the near fields to the cubic 
approximation to the true spherical scatterer. 

We can look at the percent difference of a few field components for the three codes. 
NEC gives 0.20384 V/m for the magnitude of the z component of the electric field at x = 

-0.61625 m, y = -0.61625 m, and z = -0.60793 m. This point is the lower-leftmost value 
in the NEC contour plot of Figure 6.2. FDTD gives 0.20397 V/m for the same magnitude. 
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This point is the lower-leftmost value in the FDTD contour plot of Figure 6.2. The analytic 
code gives 0.20805 V/m for the same magnitude. This point is the lower-leftmost value in 
the analytic solution contour plot of Figure 6.3. The percent difference between the NEC 
and analytic value is 2.0%. The percent difference between the FDTD and analytic value is 
2.0%. 

We can also look at the value of the z component of the near scattered field at x = 
0.0, y = -0.61625, and z = -0.0083. This point is near the center of the contour plots of 
Figures 6.2 and 6.3, The z component attains its maximum value on’ the contour plot at 
this point. The values from the NEC, FDTD, and analytic codes for the z component at 
this point are as follows: 0.71693 V/m, 0.74393 V/m, and 0.70390 V/m. The percent 
difference between the NEC and analytic value is 2.0%. The percent difference between 
the FDTD and analytic value is 5.7%. 

Intuitively, the sphere, modeled in the FDTD code, scatters more of the incident 
field towards the source than the sphere modeled in NEC. The bistatic RCS plots of Figure 
6.16 also confirm this observation. The RCS values for varying theta and phi from the 
FDTD code are consistently greater than the RCS values from the NEC code. 

From the CPU times, we also conclude that the FDTD code is less efficient than the 
NEC code in finding the scattered fields from the sphere. However, the designers of NEC 
explicitly wrote the code to deal with steady-state analysis of conducting structures. 
FDTD, on the other hand, can do either a steady-state or a transient analysis of either 
perfectly conducting scatterers or inhomogeneous dielectrics. 
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SECTION VII 

THE ELECTROMAGNETIC INTERACTIVE ANALYSIS WORKSTATION 

A. OVERVIEW 

With the Numerical Electromagnetics Code (NEC) and the Finite Difference Time 
Domain (FDTD) Code available on the Mark III Hypercube, there is a need to ease the user 
interaction with these programs. Software tools must exist for the user of these programs 
to interactively create input files, remotely execute these analysis codes, and graphically 
display the results of the analysis. To this end, we created an Electromagnetic Interactive 
Analysis Workstation (EIAW) on a Sun Microsystem 3/160 workstation. We integrated 
the NEC code into the workstation environment. 

As the complexity of scattering objects increases, NEC and other analysis codes 
require a graphics input generator to pictorially create the scattering or radiating object. A 
user also may want to visually verify the correctness of an existing structure specification. 
Many software packages exist that allows the user to create and view a three-dimensional 
object and produce a output file with structure information. However, after considering 
many Computer Aided Design (CAD) and Finite Element (FEM) packages, we settled on 
PATRAN-PLUS from PDA Engineering. This graphics package (GPK) is one of the 
modules to aid the interactive creation of input files. 

Because we cannot expect any off-the-shelf graphics software to create a correctly 
formatted NEC input file, we must construct a program called a translator that allows GPK 
and NEC to communicate. Our particular translator creates the geometry portion of the 
NEC input file from information stored in GPK's output files. PATRAN's output files are 
the patch area file and the application-independent neutral 'file. This translator also creates 
PATRAN neutral files from the geometry portions of the NEC input file. This translator 
package is the next module to aid the interactive creation of input files. 

Because the user cannot graphically specify with GPK all the input cards in a 
typical NEC input deck, we created an input editor. A card in an NEC input file is a one- 
line entry beginning with a two-column header and followed by a set of numerical fields. 
Typical headers include: SP for surface patch, GW for a set of wires, and EX for excitation 
on a structure. Examples of cards appear below. This editor, called a card editor, allows 
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the user to add or delete additional cards to an existing NEC input file. The editor gives the 
user a full list of input cards, prompts the user for the appropriate entry in each field of a 
card, and checks each field for the correct syntax. Together with GPK and the translator, 
the card editor allows the user to create a complete NEC input file. 

Because the EIAW software exists on a Sun workstation and the host to the 
Hypercube is a Counterpoint System XIX workstation, we must create a run control 
package. Starting a Hypercube application is usually an interactive process with the 
operator logged onto the host of the Hypercube. Therefore, the NEC code or any other 
application must sit on the Counterpoint. However, the EIAW modules exist on a Sun 
connected to the Counterpoint via Ethernet. We use the UNIX system and networking 
commands on the Sun to allow users to remotely submit hypercube programs from the 
workstation environment. Figure 7.1 shows the connections between the Sun 3/160; the 
Hypercube control processor (CP), a Counterpoint System XIX; and the Mark I11 
Hypercube. The external hard disks hanging off the eight-node subcubes are 

enhancements which are important to Numerical Green's Function solutions for NEC. 

Because electromagnetic codes produce pages of numerical output for the near and 
far fields, the user must have a graphics tool to visualize these fields produced by the 
scattering or radiating structure. For the designer, the ability to graphically analyze the 
output from a particular object will greatly aid in the interactive modification of the 
scattering structure. GPK also will serve to display the results from the analysis code. 

One type of graphical display is colored contour plots. The user plots values of a 
quantity as a function of coordinates. PATRAN indicates the value by a corresponding 
color from a spectrum displayed on a color bar to the side of the PATRAN graphics screen. 

PATRAN requires two files to create colored contour plots. The first file is a 
neutral file. It contains the specification of the grid on which the user superimposes the 
field values at the grid node points. The second file, called a results file, contains the node 
IDS and columns of field values associated with a particular node. Because we can assign 
several different field values to the same node number, we can create several plots of these 
distinct fields on the same console screen by requesting PATRAN to plot the various 
columns. To produce these two files, we use an output generation program utilizing some 
of NEC's output routines and new routines to properly format the different field values. 
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Mark III 
Hypercube 

Figure 7.1. Diagram of the Electromagnetic Interactive Analysis 
Workstation, Hypercube Control Processor, and Mark I11 
Hypercube 

As the number of software modules increases, we want the user to freely move 
around in the workstation environment without the need to memorize complicated computer 
commands. Therefore, we integrated the above modules in a menu and prompt driven 
environment. In this environment, the user can move from one analysis tool to the next 
using a mouse device. Figure 7.2 illustrates possible analysis paths between the different 
modules. 

B .  MENUENVIRONMENT 

The Sun 3/160 comes with a software package, called SunView, to create custom 
windows and menus on the console screen [7-11. Windows are distinct rectangular 
workspaces. Windows may also contain smaller subwindows. Depending on the type of 
subwindows, the user can run text-editing programs or application programs, plot 
graphics, or execute UNIX system commands within particular subwindows. A menu is a 
list of command options. Choice of a particular option with a pointing device, such as a 
keyboard or mouse device, initiates the execution of the command. Work within a 

7-3 



NEC to GPK 
Translator Input Editor 

I 
I 

Run Control 

- 

b Display Structure 

c 
Result 

Generation b Output Display 

Figure 7.2. Analysis paths between modules of the Electromagnetic 
Interactive Analysis Workstation 

subwindow may involve the use of custom menus to ease user interaction. Using these 
tools, we created custom windows, subwindows, and menus for the modules of EIAW. 

When the EIAW is invoked, a large window appears on the console. This window 
contains one subwindow of menus, messages, and prompts and a second subwindow for 
entering UNIX system commands. Figure 7.3 shows this first window. The menu orders 
all the separate modules into the following categories: Setup Menu, Run Menu, and Output 
Menu. Choice of any of the menu options with the mouse device brings up a lower level 
menu. 

We first discuss the Setup Menu and the EIAW modules it launches. We will 
discuss the Run Menu and Output Menu later in this section. Figure 7.4 shows the 
contents of the Setup Menu. Choice of Select Directory brings up other menu items that 
allow the user to move around in the file system directory hierarchy. Choice of Card Editor 
invokes the interactive card editor program. Choice of Display Structure or Structure 
Editor invokes GPK for object display or creation. Choice of File Translation invokes the 
NEC to GPK and GPK to NEC translator. Return moves back up to the Main Menu. We 
discuss these modules in detail below. 
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ORIGINAL PAGE IS 
OF POOR QUALITY 

MESSAGES: Choomo mnalyolm option. 
MENU PATH: Noc Uonu 

Figure 7.3. Main window of the EIAW showing the Main Menu 
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Figure 7.4. Main window of the EIAW showing the Setup Menu 

ORIGINAL PAGE IS 
OF POOR QUALtTY 
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C . STRUCTURE EDITOR 

A structure editor is software capable of accepting interactive three-dimensional 
graphics commands from an operator and creating a text or binary file containing the 
numerical description of the object. For NEC these three-dimensional objects may be flat 
or curved patches or straight wires. The structure editor also must present rotated and 
translated views of the object for verification of correctness. Because a finite element 
modeler embodies all the above features, we incorporated PATRAN as the structure editor 
in the EIAW. In the following paragraphs, we will briefly explain PATRAN's modeling 
method and then present a few simple examples [7-21. The user should refer to the 
graphics package's user manual for a full description of its capabilities. 

1. Modeling Commands 

Modeling a scattering or radiating structure in PATRAN goes through the 
following sequence: geometric creation of a complex three-dimensional object, 
superimposing a mesh of finite element nodes on the geometric structure, connecting the 
nodes to produce finite element shapes, and assigning property numbers to each finite 
element shape. We can associate numbers or text strings to groups of finite element 
shapes. A property number identifies the set of numbers or text strings. 

Geometric creation of a complex three-dimensional object requires PATRAN 
commands of the following form: 

Object Type, New Object ID, Generation Method, Generation Parameters, Original 
Object 

Object Type is one of Grid (GR), a point object; Line (LI), a one-dimensional object; Patch 
(PA), a two-dimensional object; or Hyperpatch (HP), a three-dimensional object. The 
tangent vectors to the surface of these objects may vary with position. New Object ID is 
either a wild card character, #, or a list of numbers identifying the newly created objects. 
Generation Method specifies the method for creating the new objects. We give examples of 
generation methods in examples below. Generation Parameters give additional information 
required for the specific method of creating the new object. Original Object gives the IDS 
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of already existing objects from which the user creates new objects by rotation, translation, 
or duplication operations. 

Creating finite element nodes on the structure requires a command of the following 
form: 

GFEG, Object ID,, Nl/N2/N3/rl/r2/r3 

PATRAN requires the GFEG characters. Object ID is the number of the object created by 
the above geometric creation commands. N1 is the number of finite element nodes in the 
first parametric direction of the object. R1 is the ratio of the distance between the last pair 
of nodes and the first pair of nodes. If r l  is not unity, the distances increment or decrement 
in a geometric progression from the first pair of nodes to the last pair of nodes. If the 
object is multidimensional, N2 and N3, respectively, specify the number of finite element 
nodes in the other two parametric directions; r2 and r3 specify the geometric progression of 

distances between nodes in the other parametric directions. 

Creating finite element shapes connecting nodes on the structure requires a 
command of the following form: 

CFEG, Object ID, Finite Element Type 

PATRAN requires the CFEG characters. Object ID is the number of the object created by 
the geometric creation commands. Finite Element Type specifies the type of finite element 
connecting nodes. Finite element types include BAR, a one-dimensional element 
connecting two nodes; TRI, a two-dimensional element connecting three nodes; and 
QUAD, a two-dimensional element connecting four nodes. 

Assigning property IDS to finite element shapes requires a PATRAN command of 
the following form: 

PFEG, Object ID, Finite Element Type, Numerical Values Or Text List 

PATRAN requires the PFEG characters. Object ID is the number of the object created by 
the geometric creation commands which we discussed above. Finite Element Type 
specifies the type of finite element shape. This type must match the type specified in the 
CFEG command. Numerical Values Or Text List is a list of attributes associated with all 
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finite element shapes of the given type on the specified geometric objects. We give 
examples of these PATRAN commands in the paragraphs below. 

2. Neutral File 

PATRAN communicates geometry and structure information to other codes 
through its neutral file. We discuss other PATRAN files for communicating patch area 
information, generating output results, and replaying an interactive session in the 
paragraphs below and in Section VIII. For communication with other analysis codes, the 
application-independent neutral file contains information on geometric entities, such as 
grids, lines, and patches; finite element nodes and shapes, such as BAR, TRI, and QUAD; 
and finite element property values. A BAR element connects two finite element nodes; a 
TRI element connects three nodes; and a QUAD element connects four nodes. Other 
analysis codes communicate with PATRAN by generating a neutral file. 

The neutral file is a strictly formatted text file. The file contains groups of lines 
describing different graphics entities. For example, groups of lines describing geometric 
lines or patches or groups specifying finite element nodes or shapes may exist in a typical 
neutral file. Each group contains a header line with the following integer information: 
Packet Type, Identification Number, Additional ID, Card Count, and five additional fields 
for other information. A 0 in any of these fields indicates that the field is not in use. There 
are numerous Packet Types. We will use the following Packet Types: 1 for a finite element 
node, 2 for a element shape, 4 for element property specification, 31 for grid data, 32 for 
line data, and 33 for patch data. Identification Number contains the unique number for a 
grid, line, patch, node, or finite element shape. Card Count specifies the number of 
additional cards in the group following the header card. Later we will give examples of 
entries in the other fields. 

3 .  NEC Input File 

The eventual goal of creating a structure in GPK is to produce a NEC 
formatted input file. At this point, we will give a brief description of the format of a NEC 
input file [7-31. The user should refer to NEC's user manual for a full description of 
NEC's input file format. 
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NEC's input file contains lines of text describing a structure, followed by additional 
lines controlling the flow of the analysis code. Each line contains a two-character header, 
which specifies the function of the line of text; five-character integer fields for integer 
values; and ten-character real fields for real values. 

A surface patch (SP) card is an example of a text line specifying a structure. After 
the SP characters, the card contains an integer: 0 for an arbitrarily shaped surface patch, 1 
for a rectangular flat surface patch, 2 for a triangular patch, or 3 for a quadrilateral patch. 
Real values for the coordinates of the center of the patch, the elevation and azimuthal angles 
for the normal vector at the center, and the patch area follow a 0 in the integer field. Real 
values for the coordinates of comer points follow a 1,2, or 3 in the integer field. For these 
three cases an SC card must follow an SP card to provide room for the additional real 
fields. We illustrate examples of structure cards in Section VII.C.4. 

A excitation (EX) card is an example of a program control card. A 1 in the first 
integer field specifies a plane wave excitation. The number of 8 angles and number of $ 
angles follow the first integer field. Real values for the direction and polarization angles 
follow the integer fields. Other types of excitations are possible. We illustrate examples of 
program control cards in Section VII.C.4. 

4. Creating Patches and Wires for NEC 

In the current implementation of EIAW, there are three methods to specify a 
scattering or radiating structure. These three methods correspond to the three types of NEC 
elements: arbitrarily shaped surface patches, flat surface patches defined by their comer 
nodes, and straight wire segments. An arbitrary surface patch is a structure element 
defined by its area, the coordinates of its center point, and the orientation of a normal vector 
at its center. The geometric two-dimensional patches in PATRAN will correspond to the 
arbitrarily shaped surface patches in NEC. The TRI and QUAD finite element shapes in 
PATRAN will correspond to the flat surface patches in NEC. The BAR finite element 
shapes and their associated property specifications in PATRAN will correspond to wire 
segment sets in NEC. 
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Figure 7.5 illustrates a typical set of PATRAN geometric input commands. The 
terse commands specify an octant of a sphere using the arbitrarily shaped surface patch 
method. Commands (1) and (2) instruct the graphics package to create a 900 arc of radius 
1 in the x-z plane. Command (3) instructs the graphics package to rotate the arc about the z 
axis 150. Commands (4), (6), (8), (lo), and (12) break the 150 wedge into ten smaller 
patches. Figure 7.6 shows the ten patches labeled 10 to 19. Commands (5),  (7), (9), 
(1 l), and (1 3) remove the old patches after every break. The last command, (14), 
replicates the ten patches on the wedge to make a total of sixty patches for the octant of the 
sphere. Figure 7.6 illustrates the resulting set of sixty patches. 

GPK must pass information about the objects in its data base to translators and 
analysis codes. For arbitrarily shaped surface patches, PATRAN creates an area output file 
and a neutral file containing grid point and surface patch information. Figure 7.7 shows a 
truncated copy of a PATRAN area output file. The patch ID appears in the first column and 
the area of each surface patch appears in the second column. Other columns, which NEC 
does not require, contain further information on the curvature and twist of each patch. 
Figure 7.8 contains a truncated copy of a neutral file. The first section contains data groups 
for grid entities. Each group contains a grid ID and spatial coordinate information. A 
geometric line is a curved one-dimensional object placed in the three-dimensional modeling 
space. The second section contains a data set for a line. The set contains a line ID, twelve 
parametric line coefficients, and endpoint grid IDS. The last section contains a data set for a 
geometric patch. The set contains a patch ID, forty-eight parametric patch coefficients, and 
four comer grid IDS. Each of the sixty patches in the sphere octant example produces a 
similar data set. 

NEC has the ability to analyze symmetric structures by reflecting the symmetric 
elements among planes perpendicular to the x, y, or z axis. We will use the above model 
of one-eighth of a sphere to construct a perfectly conducting sphere scatterer. In the 
subsequent discussion of the Electromagnetic Interactive Analysis Workstation (EIAW), 
we will continually return to this example of the sphere scatterer. 
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. . .  . 

GR,#,,1 

PA,#,ARC,3(0)/0/0/1/15.0,1 
PA,2#,BR,.3333/.3333/2,1 
PA.1 ,DEL 
PA,2#,BR,.5/.5/2,3 
PA3,DEL 
PA,2#,BR,.5/.5/2,2 
PA.2.DEL 

LI,#,ARC,3 (O)/O/ 1/0/-90,l 

( 1 0) PA,&,B R, .5/. 5/2,4T5 
(1 1 )  PA.4T5,DEL 
(12) PA,8#,BR,.5/.5/2,6T9 
(13) PA.6T9,DEL 
(14) PA,5O#,R0,5(0)/1/15.O,lOTl9 

. . .  

Figure 7.5. Commands to construct an octant of a unit sphere 

Figure 7.6. Octant of a sphere and the first 10 geometric patches 

The next example, an octant of a cube, illustrates the flat surface patch modeling 
method. Figure 7.9 gives the commands to construct this eighth of a cube. Command (1) 
instructs the graphics package to create grid point 1 at (0.5,0.0,0.0). Command (2) makes 
the translated grid point 2 at (0.5,0.5,0.0). Command (3) creates the translated grid points 
3 and 4 at (0.5,0.0,0.5) and (0.5,0.5,0.5). Command (4) replicates the existing grid 
points at locations displaced -0.5 units in the x direction. Figure 7.10 shows the location 
of these eight grid points. Commands (5) through (7) connect these eight grid points with 
three geometric patches. The order of the grid points for each patch construction assures 
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PATCH CHARACTERISTICS 
MIN ASPECT MAX ASPECT MIN MESH MAX MESH MIN 

PATCH AREA RATIO RATIO DISTORTION DISTORTION OBLIQUITY 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

0.26379e-01 
0.94 195e-02 
0.35520e-0 1 
0.34069e-0 1 
0.32313e-01 
0.30247e-01 
0.27864e-0 1 
0.25 153e-01 
0.22123e-01 
0.18785e-01 
. . .  

0.28221em 
0.18207e- 01 
0.18995e+01 
0.19188e+01 
0.18619e+01 
0.17632e+01 
0.1627 le+01 
0.14588e+01 
0.12623e+01 
0.1041 7e+0 1 

0.49725e+00 
0.24629e+00 
0.1932 1 e+O 1 
0.19336e+01 
0.19 161e+01 
0.18531e+01 
0.17485e+01 
0.16077e+01 
0.14350e+Ol 
0.12347e+01 

0.73886em 
0.146 14e+00 
0.98336e+00 
0.97883e+00 
0.97362em 
0.96733e+00 
0.95956e+00 
0.94974e+00 
0.93683e+00 
0.91 884e+00 

0.12528e+01 -0.26909e-05 
O.l8225e+01 -0.5537 le-05 
0.10162e+01 -0.32068e-06 
0.10207e+01 -0.44947e-06 
0.10258e+01 -0.10674e-05 
0.10320e+01 -0.10185e-05 
0.10397e+01 -0.14235e-05 
O.l0494e+01 -0.15064e-05 
0.10622e+01 -0.21806e-05 
0.1080 1 e+O 1 -0.20683e-05 

Figure 7.7. Portion of an output file containing patch area information 

that the direction of the patch normal is outward. The GFEG command (8) arranges a set 
of 4 x 4 finite element nodes on each geometric patch object. The CFEG command (9) 
connects these finite element nodes with quadrilaterally shaped finite elements. These 
quadrilateral elements represent the flat surface patches for NEC. Figure 7.10 illustrates 
the resulting octant of a cube. 

This flat patch modeling method is easier than the previous arbitrary patch shape 
method. This second method usually requires fewer geometric patches and utilizes GPKs 
finite element generation capability to create multiple NEC patches. The cube object 
requires only three geometric patches. The previous sphere example requires sixty patches. 

This second modeling method does not require an area output file, but it produces 
distinct entries in the application-independent neutral file. Figure 7.11 illustrates the neutral 
file for the octant of a cube. The first section contains data groups for finite element nodes. 
Each group contains a finite element node ID and spatial coordinates. The second section 
contains data groups for finite element shapes. Each set of three lines contains a finite 
element ID, a shape type ID in the Additional ID field, a property ID, and the corner nodes 
associated with each element. The shape type ID is 3 for TRI element shapes or 4 for 
QUAD element shapes. Each' of the twenty-seven patches in the cube octant example 
produces a data set of three lines. 
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. . .  
31 1 0  1 0  0 0 0 0 
0.100000000e+Ol 0.000000000e+00 0.000000000em 
31 2 0 1 0  0 0 0 0 
0.4371 13918e-07-0.437113847e-07 0.100000000e41 
31 3 0 1 0  0 0 0 0 
0.9659258 13e+00 0.2588 19074e+00 0.000000000em 
31 4 0 1 0  0 0 0 0 
0.86349672 le+00 0.000000000e+00 0.504674614e+OO 

31 5 0 1 0  0 0 0 0 
0.834073782e+00 0.2234894 19e+00 0.5046746 14e+00 
31 6 0 1 0  0 0 0 0 
0.504741371e+00 0.000000000em 0.863457561e+OO 
31 7 0 1 0  0 0 0 0 
0.487542808e+00 0.130636707e+00 0.863457561e+00 

31 8 0 1 0  0 0 0 0 
0.96428597Oe+00 0.000000000em 0.2658 14126e+00 
31 9 0 1 0  0 0 0 0 
0.93 142873 le+W 0.249575600e+00 0.2658 14126e+00 
31 10 0 1 0  0 0 0 0 
0.707 133889e+00 0.000000000em 0.70707947Oe+00 
. . .  
32 1 0  3 0 0 0 0 0 
0.100000000e+Ol 0.4371 13918e- 07-0.2841 14151e-06-0.165685451e+Ol 0.000000000em 
-0.4371 13847e- 07-0.1021405 18e- 13-0.724234041e-07-0.874227765e- 07 0.100000000e41 
0.165685439e+Ol 0.415248337e- 06 1 2 

3 3 1 0  0 1 0  0 0 0 0 0 
0.504741 37 le* 0.487542808e+00 0.298023224e- 07-0.342493653e- 01 0.265852332e+00 
0.256793678e+00 0.104308 128e- 06-0.180394948e- 01 -0.2222297O4e+OO-0.2 14657486e+W 
-0.93 1322574e- 06 0.150791 183e- 01-0.253959417e+00-0.245306015e+00-0.208616257e- 05 
0.1723191 14e- 01-0.220622134e- 07 0.130636707e+00 0.132330075e+00 0.127821013e+00 

-0.252795296e- 07 0.688076541e- 01 0.69699578Oe- 01 0.673245489e- 01 0.242946285e- 08 
-0.575 173348e- 01-0.582627691e- 01-0.56277655 le- 01-0.9844343 1 le- 08-0.657295882e- 01 
-0.665814504e- 01-0.6431271 13e- 01 0.863457561e+00 0.86345756le+OO 0.000000000em 
0.000000000em 0.964275420em 0.964275420ea 0.000000000e+00 0.000000000e+00 
0.130186439e+00 0.130186439e+00 0.000000000e+00 0.000000000em 0.698603391e- 01 
0.698603391e-01 0.000000000e+000.000000000e+00 6 12 13 7 
. . .  

Figure 7.8. Portion of a neutral file containing arbitrarily shaped patch 
information 

I 
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... 
(1) GR,1,,.5 
(2) GR,2,TR,0/.5,1 
(3) GR,3/4,TR,O/O/.5,1/2 

(5) PA, 1 ,QUAD,,1/3/4/2 
(6)  PA,2,QUAD,,2/4/8/6 
(7) PA3 ,QUAD,,3/7/8/4 
(8) GFEG,lFT3,,4/4 
(9) CFEG,IPT3,QUAD/4 

(4) GR,5T8,TR,-.5,1T4 

... 

Figure 7.9. Commands to construct an octant of a unit cube 

3 

A X 

1 
€ 

7 8 
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2 

Figure 7.10. Octant of a unit cube with corner grid points 

The next example, a set of wires beginning at (O.O,O.O,O.O) and ending at 
(0.5,0.5,0.5), illustrates the wire modeling feature. Figure 7.12 gives the commands to 
construct this set of wires. Command (1) instructs the graphics package to create a straight 
line from the origin to (0.5,0.5,0.5). Command (2) creates five nodes on the line such that 
the distance between a pair of nodes is twice the distance between the previous pair. 8.0 is 
the ratio of the distance between the last pair of nodes and the first pair of nodes. 
Command (3) connects nodes on the line with finite element BAR shapes. Each of these 
finite element BAR shapes may represent multiple wire segments, depending on the next 
command. Command (4) assigns a property ID number to all BAR shapes on this 
geometric line entity. The property list is 2.0/1.0/0.03/0.0/0.0/0.0. We give the meaning 
of this list below. Figure 7.13 illustrates this set of wires. 
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1 1 0 2 0 0 0 0 0  
0.500000000e+00 0 . m -  0.000000000em 
1G 6 0 0000000 
1 2 0 2 0 0 0 0 0  
0.500000000em 0.166666672em 0.000000000em 
1G 6 0 0000000 
1 3 0 2 0 0 0 0 0  
0.500000000e+00 0.333333343em 0.000000000e+00 
1G 6 0 0000000 
1 4 0 2 0 0 0 0 0  
0.500000000e+00 0.5-m 0.000000000em 
1G 6 0 0000000 
1 5 0 2 0 0 0 0 0  
0.500000000em 0.000000000em 0.166666672em 
1G 6 0 0000000 
1 6 0 2 0 0 0 0 0  
0.500000000e+00 0.166666672em 0.166666672em 
1G 6 0 0000000 
1 7 0 2 0 0 0 0 0  
0.500000000em 0.333333343em 0.166666672em 
1G 6 0 0000000 

2 1 4 2 0 0 0 0 0  
4 0 0 0 0 . 0 0 0 0 0 0 0 0 0 e m 0 . 0 m 0 . 0 + 0 0  
1 2 6 5  

4 0 0 0 0 . 0 0 0 0 0 0 0 0 0 e + 0 0 0 . 0 e m O . - e m  
2 3 7 6  

2 2 4 2 0 0 0 0 0  

. . .  

Figure 7.1 1 .  Portion of a neutral file containing finite element and node 
information for the cube octant 

. . .  
( 1) LI,#,,.5/.5 ./.5/0/0/0 
(2) GFEG,lL,GJ/8.0 
(3) CFEG,lL,BAR 
(4) PFEG, 1L,BAR,2.0/1.0/0.03/0.0/0.0/0.0 

. . .  

Figure 7.12. Commands to create wire elements 
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Figure 7.13. Set of four wire segments modeled in GPK 

The property list has meaning to the translator and the NEC input file. The first 2.0 
is a header for all wire property lists. 1.0 gives the number of wires represented by each 
finite element BAR shape. If this field were greater than 1.0, each of the four BAR shapes 
would contain multiple wire segments. 0:03 is the uniform radius of all wires represented 
by one BAR shape. If this field were 0.0, the field would signal to the translator and NEC 
that the set has a tapered wire radius. The first 0.0 gives the ratio of the length of the next 
wire to the length of the previous wire. The second 0.0 gives the radius of the first wire in 
the set. The third 0.0 gives the radius of the last wire in the set. These last three fields 
would contain nonzero entries if the set had a tapered wire radius. 

At this point we will explain the parameters for a set of wires in a NEC input file 
entry. A NEC wire entry requires the ratio, R, of the length of the next wire over the 
length of the previous wire. The property list, which we describe above, gives this 
number. If the total length of all wire segments is L and R equals 1.0, then equation 7.1 
gives the length, $1, of the first wire segment. N is the number of wires in the set. If R is 
not 1 .O, equation 7.2 gives the length of the first segment. 

SI” L 
(7.1) 

- L (1-R) 
(7.2) - L 

s1= 
1 - R N  N-2 + RN-l 1 + R + .  . . + R  
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Equation 7.3 gives the length, Si, of the other ifh segment in the set of wires. 

i- 1 S i = S i R  (7.3) 

Finally, equation 7.4 gives the ratio, T, of the wire radii of the next wire segment over the 
previous wire segment. R1 is the radius of the first wire and R2 is the radius of the last 
wire. 

This third modeling method does not require an area output file, but it produces 
distinct entries in the application-independent neutral file. Figure 7.14 illustrates the neutral 
file for the set of wire segments. The first section contains groups of three lines for nodes. 
Each group of three contains a finite element node ID and spatial coordinates. The second 
section contains data groups for finite element shapes. Each group contains a finite element 
ID, a shape type ID in the Additional ID field, a property ID, and the endpoint nodes 
associated with each BAR element. The shape type ID must equal 2 for BAR element 
shapes. Each of the four finite element BAR shapes in the above example requires a data 
set of three lines. The last section of the file contains a data group for element property 
data. This group contains a property ID number and a list of the numbers associated with 
that property ID. 

5. Modifying Existing Structures 

A designer may wish to change an existing scattering or radiating structure 
to modify the calculated radiation patterns. Therefore, the structure editor must have the 
ability to bring up an existing object for modification. 

There are several ways to recall an existing object for modification. The 
specification of an old structure exists as a PATRAN data base. The user may read this 
data base during a design session. The neutral file alone contains all the information 
specifying a structure. The user may choose to recall the structure by this method. During 
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. . .  
1 1 1  0 2 0 0 0 0 0 
0.000000000e+00 0.000000000e+00 0.000000000eM 
1G 6 0 0000000 
1 1 2 0 2 0 0 0 0 0  
0.333333343em 0.333333343e+00 0.333333343em 
1G 6 0 0000000 
1 1 3  0 2 0 0 0 0 0 
0.1000000 12e+01 0.1 OOOOOO12e+0 1 0.100000012e+01 
1G 6 0 0000000 
1 1 4  0 2 0 0 0 0 0 
0.233333349e+01 0.233333349e+01 0.233333349e+01 
1G 6 0 0000000 
1 1 5  0 2 0 0 0 0 0 
0.500000000e+01 0.500000000e+01 0.500000000e+01 
1G 6 0 0000000 
. . .  
2 1  

2 
1 1  

2 
12 

2 
13 

2 
14 

2 2  

2 3  

2 4  

. . .  

2 
0 
12 

0 
13 

0 
14 

0 
15 

2 

2 

2 

2 
1 
0 

1 
0 

1 
0 

1 

2 

2 

2 

0 

0 0 0 0 0  
0 0.000000000em 0.000000000em 0.000000000em 
0 
0 0 0 0 0  

0 0.000000000em 0.000000000e+00 0.000000000em 
0 
0 0 0 0 0  

0 0.000000000em 0.000000000e+00 0.000000000e+00 
0 
0 0 0 0 0  

0 0.000000000e+00 0.000000000em 0.000000000e+00 
0 

4 1 2 2 2 2 0 6 0  
0.200000000e+01 0.100000000e+01 0.300000000e-01 0.000000000e+00 0.000000000e+00 
0.000000000e+00 
. . .  

Figure 7.14. Portion of a neutral file with information on wire segments 

a design session, PATRAN automatically creates a session file of all interactive commands. 
Although this method is lengthy, the user can replay the particular session that created the 
old structure. 

The use of translators, discussed in the following paragraphs, allows another 
alternative to recall an existing object. The geometry section of a NEC input file contains 
all the information for the structure. The user can use the NEC to GPK translator on an 
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existing NEC input file and produce a application-independent neutral file. The user then 
reads the neutral file of the structure. 

Once PATRAN has the old structure, the user can'use the object creation, finite 
element meshing, and property tagging commands to add to or modify a structure. 

D. TRANSLATORS 

Each software has its own input and output file format. For different codes to 
exchange data, the user must format the data in a manner readable by the particular 
program. We call the programs that perform this task translators. However, there may not 
be a one to one correspondence between the data that one piece of software puts out and 
the data another piece of software reads. For these cases, the translator program must 
perform calculations on the raw data before formatting can occur. 

We could not expect GPK to produce output files appropriate for the NEC analysis 
code. Likewise, GPK has no ability to produce an image given a typical NEC input file. 
Therefore, we produced a NEC to GPK translator and a GPK to NEC translator. 

We invoke the translators by choosing the File Translation option in the Setup 
Menu of the EIAW. Figure 7.15 shows this menu option for a typical translation session. 
The particular session creates the geometry section of the NEC input file for the sphere 
octant. 

1. Patch Equations 

In order to understand the work of the translators, we first present the 
mathematical description of a curved surface patch within PATRAN. These equations are 
especially important for the translation of structures created with the arbitrarily shaped patch 
model described above. 

PATRAN describes a curved surface patch by functions of two parametric 
variables, 51 and 52. These variables range from 0.0 to 1 .O. The coordinates of any point 
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Figure 7.15. Main window of the EIAW showing the Setup Menu and the 
File Translation option 

7-2 1 



Knowledge of the values of x, y, and z and the partial derivatives of x, y7 and z, 
with respect to the parametric variables, at the comers of the curved patch determines the 
values of x, y, and z within the body of the patch [7-11. Let 2(51,52) represent any one of 
x(51,52), y(51,52), or z(51,52). Equation 7.5 gives the coordinates of points within the 
body of the patch. 

Equations 7.6 and 7.7 give the partial derivatives of the coordinates with respect to 
parametric variables. 

Equations 7.8 through 7.12 give the expressions for the F functions in terms of a 
parametric variable. 

3 2  
F 4 ( 0 = 5  - 5  

(7.8) 

(7.9) 

(7.10) 

(7.1 1) 

(7.12) 

Equation 7.13 gives the matrix of values of the coordinates and their partids at the comers 
of the curved surface patch. Such a matrix exists for each of the three Cartesian 
coordinates. These forty-eight numbers appear as the patch coefficients in the neutral file 
shown in Figure 7.8. 
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(7.13) 

2. GPK to NEC Translation 

The entry in the NEC input file for a arbitrarily shaped surface patch 
requires the following information: the surface area of the patch, the coordinates of the 
center of the surface patch, and the elevation and azimuthal angle of the outward normal 
vector at the center of the patch. We find the surface area of the patch from the output area 
file (Figure 7.7). We read the forty-eight patch coefficients from the application- 
independent neutral file (Figure 7.8) to construct the array in equation 7.13 for each 
coordinate direction. We find the coordinates of the center using equation 7.5 with 61 and 
52 set equal to 0.5. To find the elevation angle and azimuthal angle, we use equations 7.6 
and 7.7 with 61 and 62 set equal to 0.5. Using equations 7.6 and 7.7, which give the 
tangent vectors at the center of the patch, we first find the normal vector by taking a cross 
product and then evaluate the orientation of this normal vector. 

Returning to the sphere scatterer example, we can use the GPK to NEC translator to 
create the geometry section of the NEC input file. Passing the files, portions of which we 
illustrate in Figures 7.7 and 7.8, for the octant of the sphere scatterer to the translator, we 
obtain the file illustrated in Figure 7.16. Each line of this portion of the geometry section 
of the NEC input file contains a specification for an arbitrary shaped surface patch. The 
nonzero columns correspond to the following information: the Cartesian coordinates of the 
center of the patch, the elevation and azimuthal angle of the normal vector at the center, and 
the area of the surface patch. 

The entry in the NEC input file for a flat patch requires three comer nodes for a 
rectangular or triangular patch or four comer nodes for a quadrilateral patch. For a neutral 
file created using the flat patch model, the translation to a NEC input file is straight- 
forward. The node numbers associated with a finite element TRI or QUAD shape identify 
the nodes in the neutral file. We then convert the coordinates of’the identified nodes to the 
coordinates of a flat patch for NEC. 
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SP 0 0 0.3859329 0.0508090 0.9214072 67.072242 7.4999895 0.0263790 
SP 0 0 0.1345398 0.0177125 0.9908702 82.273910 7.4999633 0.0094195 
SP 0 0 0.9891579 0.1302251 0.0684593 3.8678658 7.5000153 0.0355200 
SP 0 0 0.9713060 0.1278749 0.2015152 11.563590 7.5000153 0.0340690 
SP 0 0 0.9367341 0.1233234 0.3284283 19.165903 7.5000677 0.0323130 
SP 0 0 0.8866230 0.1 167261 0.4480075 26.654396 7.4999895 0.0302470 
SP 0 0 0.8221483 0.1082379 0.5590695 34.039726 7.4999108 0.0278640 
SP 0 0 0.7444881 0.0980137 0.6604209 41.353576 7.4998846 0.0251530 
SP 0 0 0.6548281 0.0862098 0.7508614 48.641994 7.4999108 0.0221230 
SP 0 0 0.5543500 0.0729816 0.8291994 55.955921 7.4999108 0.0187850 
. . .  

Figure 7.16. Portion of an NEC input file for the sphere scatterer 

Returning to the cube scatterer example, we can use the GPK to NEC translator to 
create the geometry section of the NEC input file. Passing the file, portions of which we 
illustrate in Figure 7.1 1, for the octant of the cube scatterer to the translator, we obtain the 
file illustrated in Figure 7.17. Each pair of lines with headers SP and SC contains a 
specification for a flat surface patch. The nonzero columns correspond to the following 
information: a 1 specifying a rectangular patch and the Cartesian coordinates of three comer 
nodes. A 2 in the second column of a SP card would specify a triangular patch followed 
by the Cartesian coordinates of three comer nodes. A 3 in the second column of a SP card 
would specify a quadrilateral patch followed by the Cartesian coordinates of four comer 
nodes. The order of these nodes determines the orientation of a normal and of surface 
currents. 

The entry in the NEC input file for a set of wires requires the number of segments 
in the set, the beginning and ending points, the wire radius or 0.0 for tapering, the ratio of 
lengths of adjacent wires, the radius of the first wire, and the radius of the last wire. For a 
neutral file created using the wire model, the translation to a NEC input file is straight- 
forward. The node numbers associated with a BAR shape identify the nodes in the neutral 
file. These nodes are the endpoints of wire segments. The property list assigned to the 
BAR set determines the other wire parameters. 

Returning to the wire example, we can use the GPK to NEC translator to create the 
geometry section of the NEC input file. Passing the file, portions of which we illustrate in 
Figure 7.14, for the BAR set to the translator, we obtain the file illustrated in Figure 7.18. 
Each line with header GW contains a specification for a set of wires. The nonzero columns 
in the GW card correspond to the following information: a 1 specifying the number of 
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SP 0 
sc 0 
SP 0 
sc 0 
SP 0 
sc 0 
SP 0 
sc 0 
SP 0 
sc 0 
SP 0 
sc 0 
SP 0 
sc 0 
SP 0 
sc 0 
SP 0 
sc 0 
. . .  

1 0.5000000 0.000e+00 0.000e+00 0.5000000 0.1666667 0.000ei-00 
0 0.5000000 0.1666667 0.1666667 
1 0.5000000 0.1666667 O.OOOe+OO 0.5000000 0.3333333 0.000e+00 
0 0.5000000 0.3333333 0.1666667 
1 0.5000000 0.3333333 O.OOOe+00 0.5000000 0.500oooO 0.000e+00 
0 0.5000000 0.5000000 0.1666667 
1 0.5000000 0.000e+00 0.1666667 0.5000000 0.1666667 0.1666667 
0 0.5000000 0.1666667 0.3333333 
1 0.5000000 0.1666667 0.1666667 0.5000000 0.3333333 0.1666667 
0 0.500oooO 0.3333333 0.3333333 
1 0.5000000 0.3333333 0.1666667 0.5oooOOO 0.5000000 0.1666667 
0 0.500oooO 0.5000000 0.3333333 
1 0.5000000 0.000e+00 0.3333333 0.5000000 0.1666667 0.3333333 
0 0.5000000 0.1666667 0.5000000 
1 0.5000000 0.1666667 0.3333333 0.5000000 0.3333333 0.3333333 
0 0.500oooO 0.3333333 0.5000000 
1 0.5000000 0.3333333 0.3333333 0.5000000 0.5000000 0.3333333 
0 0.5000000 0.5000000 0.5000000 

Figure 7.17. Portion of an NEC input file for the cube scatterer 

GW 0 
GW 0 
GW 0 
GW 0 

1 0.000ei-00 O.OOOe+00 O.O00e+00 0.3333333 0.3333333 0.3333333 0.0300000 
1 0.3333333 0.3333333 0.3333333 1.0000000 1.OOOOOOO 1.0000000 0.0300000 
1 1.0000000 1.0000000 l.OooOo00 2.3333333 2.3333333 2.3333333 0.0300000 
1 2.3333333 2.3333333 2.3333333 5.0000000 5.0000000 5.0000000 0.0300000 

. . .  

Figure 7.18. Portion of an NEC input file for a set of wire segments 

segments and the six values for the Cartesian coordinates of the beginning and ending 
points. 0.03 specifies the radius of each wire in the set. If this value were 0.0, the input 
will would require a second card, the GC card. The third field of a GC card specifies the 
ratio of lengths between adjacent wires. The fourth and fifth fields give the radius of the 
first wire and the radius of the last wire in the set, respectively. 

3. NEC to GPK Translation 

For GPK to successfully image a structure given in a NEC input file using 
the arbitrary surface patch model, GPK requires the coordinates of the comer points to 
create grid entries in its neutral file and the forty-eight patch coefficients which specify the 
curvature of the patch. However, the only information in the NEC input file is the patch 
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area and the orientation of the normal vector at the center. There is an infinite number of 
possible geometric patches that we can construct from this information. Therefore, we 
make the following assumption about the surface patch geometry. The patch is rectangular 
with the area specified in the last column of the SP card in the NEC input file. The patch is 
also tangent at its center to the true surface of the scattering or radiating object. 

We mathematically describe the arbitrary patch constructed from the NEC input file 
with the following equations. Equations 7.14 and 7.15 give the orthogonal unit vectors on 
the surface of the rectangular patch. a is the elevation angle off the x-y plane. This value is 
from the sixth numerical entry in the SP card. t) is the azimuthal angle off the x axis. This 
value is from the seventh numerical entry. el ,  e2, and e3 are the unit vectors in the 
direction of the coordinate axes. 

(7.14) 
(7.15) h A A 

n2-= cos + cos (a + 90) + sin + cos (a + 90) e2 + sin (a + 90) e3 

Equation 7.16 gives the coordinates of any point on the surface patch as a function of the 
parametric variables 51 and 52 and the unit vectors given in equations 7.14 and 7.15. The 
range of these parametric variables are 0.0 to 1 .O. Equations 7.17 through 7.19 give the 
partials of the coordinates with respect to the parametric variables. In the last equation, 
7.20, A is the area of the patch and 2w is the length of one side. The area is in the eighth 
numerical entry in the SP card. The vector, c, is the coordinate of the center of the patch. 
These coordinates are in the third through the fifth numerical entry in the SP card. 

(7.16) 
(7.17) 

(7.18) 

(7.19) 

(7.20) 

After calculating the appropriate parameters for the rectangular patch, the translator 
constructs the neutral file. Using the NEC input file, portions of which we show in Figure 
7.16, for the octant of a sphere, the translator produces the neutral file shown in Figure 
7.19. The second section contains the forty-eight patch coefficients found using equations 
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3 1 1 0 1  
4.706851 84Oe-01-1.994197071e-02 8.897709846e-01 
3 1 2 0 1  
4.494856298e-01 1.41084671Oe-01 8.897709846e-01 
3 1 3 0 1  
3.01 180601 le-01 1.215599701e-01 9.530434608e-01 
3 1 4 0 1  
3.223801 553e-01-3.946667 165e-02 9.530434608e-01 

33 1 0 10 
4.70685184Oe- 01 4.494856298e- 01-2.1 1995542Oe- 02-2.1 1995542Oe- 02 3.223801553e- 01 
3.01 180601 le- 01-2.1 19955420e- 02-2.1 1995542Oe- 02-1.483050287e- 01-1.483050287e- 01 
0.000000000e+00 0.000000000e+00-1.483050287e- 01-1.483050287e- 01 0.000000000em 
0.000000000e+00-1.99419707le- 02 1.41084671Oe- 01 1.610266417e- 01 1.610266417e- 01 
-3.946667165e- 02 1.215599701e- 01 1.610266417e- 01 1.610266417e- 01-1.952470094e- 02 
-1.952470094e- 02 0.000000000e+00 0.000000000e+00- 1.952470094e- 02-1.952470094e- 02 
0.000000000em 0.000000000e+00 8.897709846e- 01 8.897709846e- 01 0.000000000e+00 
0.000000000em 9.530434608e- 01 9.530434608e- 01 0.000000000e+00 0.000000000e+00 
6.32724762Oe- 02 6.32724762Oe- 02 0.000000000e+00 0.000000000e+00 6.32724762Oe- 02 
6.327247620e- 02 0.000000000e+OO 0.000000000e+00 1 2 3 4 
. . .  

Figure 7.19. Portion of a neutral file produced by passing an NEC input 
file through the NEC to GPK translator 

7.16 through 7.20. We already discussed in Sections VII.C.2 and VII.C.4 the different 
sections of the neutral file for an arbitrary patch shape. 

The translation of a NEC input file containing flat patch information to a neutral file 
requires little calculation. The translation process takes one SP and SC card pair and 
creates one data group for a finite element TRI or QUAD shape and three or four data 
groups for finite element nodes. Look to Section VII.C.2 for a discussion of the data 
groups in an application-independent neutral file. Look to Section VII.D.2 for the 
correspondence between a flat surface patch in NEC and a TRI or QUAD finite element 
shape in PATFUN. 

The translation of a NEC input file containing wire segment information to a 
neutral file also requires little calculation. The translation process takes one GW and GC 
card pair and creates one data group for a finite element BAR shape, two data groups for 
finite element nodes, and one data group for a property specification. Look to Section 
VII.C.2 for a discussion of the data groups in an application-independent neutral file. 
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Look to Section VII.D.2 for the correspondence between a set of wire segments in NEC 
and a BAR finite element shape in PATRAN. 

E. CARDEDlTOR 

The structure editor, together with the GPK to NEC translator, can only create the 
geometry section of a NEC input file. A complete NEC input requires other cards. Scaling, 
frequency, and excitation cards are examples. In order to ease the addition of these cards 
as well as the modification of existing input files, we create a menu and prompt driven 
interactive file editor, called a card editor. 

We want the card editor to run on several different machines with many different 
applications. To this end, we locate the application-dependent information in a FIELDS 
file. This file contains formatting information for the different input cards in a particular 
application. We also locate the terminal-dependent information in an ESCAPES file. The 
ESCAPES file contains the commands to manipulate the cursor for a particular terminal. 
The following paragraphs discuss the FIELDS file created for NEC and the ESCAPES file 
created for Tektronix VTlOO and Sun window terminals. 

1. FIELDS File for NEC 

We can best explain the format and contents of a FIELDS file using the file 
for NEC as an example. We illustrate a portion of this file in Figure 7.20. The original file 
contains groups of entries for all the possible NEC input cards. Figure 7.20 illustrates an 
entry for a SP card and a SC card. The numbers in parenthesis on the left do not appear in 
the original fie. They exist for the purposes of discussing each line entry. 

The entry for the SP card begins on line (1) and contains the following information. 
Line number (1) contains a text string which comments the entry. Line (1) comments that 
the SP card is the eleventh card specified in this file. Line (2) is a text string identifying a 
group of cards. The SP card belongs to the geometry group. Line (3) is the number of 
possible values that could trigger the automatic insertion of another card after the SP card. 
Lines (4) through (6) are a list of the possible triggers. These lines indicate that if the entry 

' 

in the third column of an SP card is 1,2, or 3, the editor will automatically add an SC card 
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(1 1) Card generates a surface patch 
gmmevy 
3 
3 1 sc 
3 2 sc 
3 3 sc 
Surface Patch (SP) 
SP 
9 

(10) -1 2 7 
(1 1) To input parameters of a single surface patch. 
(12) 
(13) 3 5 1 
(14) A zero should occur in this field. 
(15) 
(16) 6 10 1 
(17) Selectpatch shape: O=arbitrary patch shape l=rectangle patch shape 2;mangular 
(18) patch 3=quadrilateral patch 
(19) 11  20 5 
(20) Patch shape 0: x coordinate of patch center. Patch shape 1-3: x coordinate of 
(21) corner 1.  
(22) 21 30 5 
(23) Patch shape 0 y coordinate of patch center. Patch shape 1-3: y coordinate of 
(24) comer 1. 
(25) 31 40 5 
(26) Patch shape 0: z coordinate of patch center. Patch shape 1-3: z coordinate of 
(27) comer 1.  
(28) 41 50 5 
(29) Patch shape 0: elevation angle above the x-y plane of normal vector in degrees. 
(30) Patch shape 1-3: x coordinate of comer 2. 
(31) 51 60 5 
(32) Patch shape 0 azimuth angle from the x axis of normal vector in degrees. 
(33) Patch shape 1-3: y coordinate of comer 2. 
(34) 61 70 5 
(35) Patch shape 0: patch area in square of units used. Patch shape 1-3: z 
(36) coordinate of corner 2. 
(37) (12) Card generates a surface patch (continue): 
(38) geometry 
(39) -1 
(40) Surface Patch (SC) 
(41) sc 
(42) 9 
(43) 1 2 7 
(44) If the third field in the SP card is 1 or 2 or 3, use this card for additional 
(45) parameters. 
(46) 3 5 1 
(47) A zero should occur in this field. 
(48) 
(49) 6 10 1 
(50) A zero should occur in this field. 
(51) 
(52) 11 20 5 
(53) Patch shape 1-3: x coordinate of comer 3. 
(54) Multiple patch: x coordinate of comer 3. 
(55) 21 30 5 
(56) Patch shape 1-3: y coordinate of comer 3. 
(57) Multiple patch: y coordinate of corner 3. 
(58) 31 40 5 
(59) Patch shape 1-3: z coordinate of comer 3. 
(60) Multiple patch: z coordinate of comer 3. 
(61) 41 50 5 
(62) Patch shape 3 only: x coordinate of comer 4. 
(63) 
(64) 51 60 5 
(65) Patch shape 3 only: y coordinate of comer 4. 
(ss) 
(67) 61 70 5 
(68) Patch shape 3 only: z coordinate of comer 4. 

. . .  

Figure 7.20. Portion of the FIELDS file for the Numerical Electromagnetics Code 

7-29 



after the SP card. Line (7) is the text string used for the menu entry. Line (8) is the first 
two characters in the SP card. Line (9) is the number of numerical fields in the SP card. 
We group the field information into sets of three lines. Lines (10) through (34) in steps of 
3 each contain three numbers. The first number is the beginning column for the field. The 
second number is the ending column for the field. There are eighty columns in a NEC card 
entry. The third number indicates the type of information in the field. 1 indicates integer. 
2 indicates normal floating point format. 3 indicates FORTRAN logical format. 4 indicates 
character format. 5 indicates exponential real format. 6 indicates FORTRAN double 
precision format. 7 indicates that the user cannot modify the field. Lines between (10) and 
(37) which have text or blanks contain text displayed to the user during a interactive 
session. 

The entry for the SC card begins on line (37). Like the SP card entry, the SC card 
entry has similar lines. Line (37) comments that the SC card is the twelfth card specified in 
this file. Line (38) indicates that the SC card is part of the geometry card group. Line (39) 

contains a negative number, which indicates that the appearance of an SC card depends on 
previous cards in the input file. Line (40) shows the menu entry for the SC card. Line 
(41) shows the two characters at the beginning of an SC card. 

2. ESCAPES File for Tektronix VTlOO and Sun Window Terminals 

We can best explain the format and contents of the terminal-dependent 
ESCAPES file using the file for a Tektronix VTlOO and a Sun window terminal. We 
illustrate a portion of this file in Figure 7.21. There are groups of entries for the possible 
escape sequences on a VTlOO as well as user-defined character sequences. An escape 
sequence is a set of keyboard punches containing an escape character. Moving the cursor 
on the terminal, inserting and deleting text lines, and blanking portions of the text on the 
screen are examples of the effects of these escape sequences. Toggling the menu of card 
options on or off, exiting the file, and replacing the normal escape sequences with a shorter 
set are examples of the effects of user-defined escape sequences. The numbers in 
parentheses on the left do not appear in the original file. They exist for the purposes of 
discussing each line entry. 
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(1) 45 
(2) 0)Insert.n.spaces.from.cursor: 
(3) "[#@ 
(4) 1 
(5)  1)Cursor.up: 
(6) "[#A 
(7) 1 
(8) 2)Cursor.down: 
(9) W B  
(10) 1 
(1 1) 3)Cursor.forward: 
( 12) ̂ [#C 
(13) 1 
(14) 4)Cursor.backward: 
(15) "[#D 
(16) 1 
(17) 5)Cursor.nth.line.down: 
(1 8) "[#E 
(19) 1 
(20) 6)Cursor.location: 
(21) "[##H 
(22) 1;l 
(23) 7)Erase.from.cursor.to.bottom: 
(24) "[J 
(25) 8)Erase.from.cursor.to.end.of.line: 
(26) "[K 
(27) 9)Insert.n.lines.from.current.line: 
(28) "[#L 
(29) 1 
(30) 10)Delete.n.lines.from.current.line: 
(31) "[#M 
(32) 1 
(33) 1 1)Delete.n.characters.from.cursor: 
(34) "[#P 
(35) 1 
(36) 1 2)Select .reverse. image. rendition: 
(37) "[h 
(38) 0 

(40) "r 

. . .  
(39) 37)Within.the.current.field.move.one.character.to.the.nght: 

(41) 38)Within.the.current.field.move.one.character.to.the.le~: 
(42) "1 
(43) 39)Quit.from.card.editor.without.saving: 
(44) P 
(45) 4O)Exit.from.card.editor.saving.changes: 
(46) 
(47) 41)Save.changes.in.the.current.file.without.exiting: 
(48) "s 
(49) 42)Add.a.new.card.above.the.current.cursor.position: 
(50) "n 
(51) 43)Delete.a.card.at.current.cursor.position: 
(52) 
(53) 44)Toggle.menu.of.card.items: 
(54) "rn 

Figure 7.21. Portion of the ESCAPES file for Tektronix VTlOO and Sun terminals 
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The entries in the ESCAPES file contain the following information. Line (1) is the 
number of terminal- and user-defined sequences. If a user adds more sequences to the list, 
he must modify the card editor code so that the editor understands the effect of the new 
sequences. Groups of two or three entries follow line (1). The first line in any group is a 
comment line describing the function of the character sequence. Lines (2), (5) ,  and (8) are 
examples of comment lines. The escape or user-defined sequence follows the comment 
line. A A[ indicates an escape character. However, a A is a normal carat character and 
usually signals a user-defined character sequence. A # character indicates an arbitrary 
number entry. A % character indicates an arbitrary character string. If either the # or % 

character appears in the sequence, the third line in the set indicates the default numeric or 
text values for these arbitrary entities. 

3. Window Interface to the Card Editor 

Although the user-defined sequences are short, we prefer to use the menu 
mechanism to run the card editor. A user normally invokes the card editor by choosing the 
Card Editor option in the Setup Menu of the EIAW. When the card editor program begins, 
a new window, which contains two smaller subwindows, appears. Look to Section VI1.B 
for a discussion of the window environment on the Sun 3/160 workstation. The top 
subwindow contains the text of the NEC input file, the menu of card options, and prompts 
for the contents of each field in a given card. This subwindow is a normal Sun window 
terminal. The bottom subwindow controls the activity in the top subwindow. This 
subwindow sends the appropriate character sequences to the top subwindow after a menu 
selection. Figure 7.22 shows the card editor window of the EIAW. 

The card editor has other features. It always highlights the current field in the file. 
The editor continually updates the display on the bottom of the screen with text explaining 
the significance of the current field. 

Many of the menu options are self explanatory. The FILE menu contains entries to 
toggle the menu, delete a card entry, or gracefully leave an editing session. The HORI. 
MOVEMENT and VERT. MOVEMENT control the motion of the cursor from one field to 
the next. The HORI. MOVEMENT COUNT and VERT. MOVEMENT COUNT control 
the number of multiple horizontal and vertical cursor movements. The maximum count is 
thirty. FIELD MOVEMENT and FIELD MOVEMENT COUNT control the cursor 
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a 
8 
8 
8 
8 
8 

8 
8 
8 
8 
8 
8 
8 
8 

8 
8 
8 

a 

e 

e 
e 
8 
8 
8 
8 

a 
1 

0 a.5957587 8.457izm m.wm 4 1 . ~ ~ 3 5 7 2  37.499877 8.az5isso 
a 8.4571263 8.5957986 ~.=MZIB 41.~53561 52.499874 m.oz5i5sa 

8 a.osm01.w 8 . 7 4 4 4 ~  L ~ E U Z O ~  4 i . s s s 7 2  8 2 . 4 m 6 2  m.miissa 
8 m . 6 i e z m  0 . ~ ~ 2 7 5 4 2  8 . 7 ~ ~ 6 1 4  4 0 . ~ 1 9 9 8  22.499878 0.m221230 

8 8.2876616 8.6537523 8.66UZW 41.353588 67.499885 8.8251538 

8 8.5239929 8.4028739 8.7518614 48.641983 37.499851 8.8221238 
8 8.4828739 8.5239929 8.7588614 48.642889 52.499858 8.8221230 
8 8.2527542 8.6182827 8.7588614 48.642821 67.499816 8.8221238 

0 8.5165719 8.2139711 8.8291994 55.955917 22.499887 8.8187850 

8 8.3483789 8.44359U 8.8291994 55.955928 52.499897 8.8187858 
8 8.2139711 8.5165719 8.8291994 55.955928 67.499893 8.8187858 
8 8.8729815 8.554SSU 8.8291994 55.955925 82.499969 8.8187858 

8 8.4996667 

1 8 8 W8.8 
1 1 8  w.8 278.8 160.8 

8 8.m62097 m . 6 s m e i  8 . 7 ~ 1 8 6 ~  4 8 . 6 4 2 m  82.499816 a.az212sm 

a 1.4435984 a.34m3789 a.azgi994 55.955925 ~7.499912 m.ei8785a 

111 

FILE: [ h l m t m  Card] [Quit F i l m ]  [Savm F i le ]  [Enlt Film] 

HORI. MOVEMENT CWWT: 3 

VERT. MOVMENT: [up] [Mult. Up] [Mult. Own] 
VERT. MOVMENT COUNT: 1% 

FIELD MOVEMENT c m :  a 
INSERT CHAR. FIELD: 
MSSIGE: 

HORI. MOVEMEW: marn [Right ]  [&It. Loft] [MI*. Riphtl 

FIELD MOVMEWT: [Rl&t] [kit. Lef t ]  [&It. Rlghtl 

Figure 7.22. The card editor window in the EIAW 
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movement within a particular field. The user can type in the region after INSERT CHAR. 
FIELD. The typed characters automatically appear at the current cursor position on the top 
subwindow. 

If the user chooses to toggle the menu, the top subwindow superimposes the menu 
of card options on top of the current file. The bottom subwindow changes the menus. 
Figure 7.23 illustrates the appearance of the card menu. The user prompt on the bottom of 
the terminal subwindow explains the use of the currently selected card. Figure 7.23 
illustrates the explanation of the excitation card. The VERT. MOVEMENT and VERT. 
MOVEMENT COUNT pertain to vertical movement in the card menu. 

F. RUNCONTROL 

With the input file prepared for NEC, we can run the NEC code on the hypercube. 
A normal hypercube session requires the user to remotely log into the control processor 
(CP). On the CP the user enters a queue to await his turn to submit an interactive program. 
However, instead of remotely logging into another machine, the user of the EIAW would 
prefer to remain in the EIAW environment. Fortunately, the user can also choose to 
submit a batch job on the hypercube that would execute at some future time. We will use 
this batch mechanism to submit hypercube jobs for immediate execution. The only 
restriction on batch submission is execution delays until the interactive queue is empty. 
The run control program is the piece of code that causes NEC to execute on the CP and 
hypercube. 

For the run control program to function, it needs information on the location of 
executable files. It requires an input file. Figure 7.24 illustrates an example input file. 
Each pair of entries begins with a comment line. The second line of the pair contains the 
appropriate parameter. This file specifies the control processor machine, the host Sun 
computer, the parallel and sequential NEC codes, and the location of these codes in the 
directory hierarchies. 

After performing the necessary setup steps, the user can return to the Main Menu 
and choose the next analysis option, Run Menu. The Run Menu allows the user to remain 
in the EIAW environment while the NEC code executes on the CP and on the Mark 111 
hypercube. 
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ORIGINAL PAGE IS 
OF POOR QUALITY 

0 0 0.3422255 a.826201i i.4480073 Ze.sssi Wire * rc  s p c i t i m )  
0 0 0.1167261 0.8866229 0.4480075 26.654Sl End Gem Input (E) 
0 0 0.7661203 0.5173974 0.5590695 34.03971 Read NOF F i l e  (W) 
0 0 0.6578824 0.3.41109 0.5590681 34.03971 Coord 1 r m ~ f o d l ) O  
0 0 0.504818S 0.6578823 0.5590694 34.03971 Goner Cyllndrlc(GR) 
0 0 0.3173374 0.7551202 0.5590694 34.03971 Scale Dlmeneion(GS) 
0 0 O.iWZS78 0.8221483 0.5590694 34.03971 Wire SpwAficat(OW) 
0 a 0.6937524 0.2879617 0.6604209 41.35SSl Wire Specificat(GC) 
0 0 0.5957387 0.4571263 0.6604208 41.35351 Reflect ion (CX) 
a 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
l 

0 a.4571263 0.5957385 0.66042M 41.35SSi Surface Patch (SP) 
0 0.2675516 0.6937323 0.6604200 4l.SSSSl Surface Patch (SC) 
0 0.0980137 0.7444880 0.66M2M 41.55351 Mult  Patch Surf(S4)  
0 0.51021126 1.2527542 0.7508614 48.64191 M a ~ i m  Cwol lna  (CP) 
0 0.5239929 0.lL207ss 1.7588614 48.641si EK Thin wire i i e ( ~ ~ )  
(I 0.4020739 0.5239929 0.7508614 48.64201 End of Run (EN) 
0 0.2527542 0.6102127 0.7508614 48.64201 
0 0.0862097 0.6548281 0.7508614 48.64201 reqwncy (FR 
0 0.5165719 0.2139711 0.8291994 55.95591 Md Crwnd Para(GD) 
0 0.4435oU 0.3403789 0.8291994 SS.955Sl C r d  Parwot  (CY) 
I 11.3403789 0.U359U 0.8291994 SS.eSSSl I n t v  ~ o K I - ~ ( K I I )  
0 0.2159711 0.5165719 0.8291994 55.95591 Loading (LO) 
0 1.0729815 0.5543500 0.8291994 55.9559l tioar E l e c t r i c  F(NE) 

I Near MagMtic  C(NH) 
0 0 0.4996667 I Next Structure (NW) 

I P r i n t  Charge De(PQ) 
0 1 a 0 soo.0 I P r i n t  Current (PT) 
i l i a  90.0 270.0 1801 Radiation Patte(RP) 

I Wit- NCF F i l e  (WC) 
I EKWUt. (XQ) 
I .... End O f  Menu.... 

b p o c i f l e e  th. enc i ta t ion  tor t tw atructure.  Eatcitation can ba voltage eourcee o 
........ end o f  f i l e  .......... 

Figure 7.23. The card editor window showing the appearance of the card menu 
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The directory on the Counterpoint containing sequential NEC: 
lylemljseq 
The directory on the Counterpoint containing parallel NEC: 
/urmp/emj par 
The name of the NEC sequential code: 
neccp.out 
The name of the NEC parallel code: 
neccp.out 
The name of the NEC element code: 
neceltp.out 
Maximum number of minutes for a batch job on the hypercube: 
45 
The name of the Counterpoint machine: 

The name of the Sun machine: 
sun9 

cPc5 

Figure 7.24. Example input file for the run control program 

Figure 7.25 illustrates the Run Menu and a typical interactive session with the run 
control program. During the session the user specifies the NEC input file, sph3.inp; the 
NEX output file, sph3.out; the file containing the current vector, sph3.cur; the mode of the 
run, parallel or sequential; and, if parallel mode, the dimension of the hypercube. The run 
program tells the user that it successfully copied the input file and command file to the CP 
of the hypercube. The parallel execution of NEC is the current status of the run. When 
NEC terminates, the run control program will move the solution vector file to the EIAW 
environment and delete all scratch files from the CP. 

G .  RESULTS ANALYSIS 

With the solution vector, the user can obtain the near electric and magnetic fields, 
the E 8 and E @ field, and the total gain. A results generation program takes the solution 

vector and constructs the appropriate files for GPK to image these fields. The results 
program will create a neutral file containing the grid on which GPK superimposes the field 
values at the node points. It also creates a results file which contains the columns of field 
values. We describe the results generation program in more detail in Section VlII. 
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ile(do not indicate a path): sph3.inp 

EC output file(do not Indicate a path): eph3.out 

EC molution flle(do not Indtcate a path): a p h 3 . c ~  

xecute mequentlal NEC(enter I) or parallel NEC(enter 1): 1 

parallel run, nu. tlu direneion of the Hypercube: 5 
plated Copy Of Input File To Counterpoint. 
pletmd Copy Of C m a n d  Script File To Counterpoint. 
rt Of Analysis Code On Th. nyporcub.. 
: /ut.p/aJpar/nrccp.art</utrp/rjpar/inout.nrc>/u~p/-jpar/trp.999 : etarted at Fri Apr 22 16:26:04 1988 

Figure 7.25. The Run Menu and a typical interactive session with the run control program 
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After recovering the solution vector, the user can return to the Main Menu and 
choose the next analysis option, Output Menu. The Output Menu allows the user to create 
files containing field data and display the fields graphically. Figure 7.26 illustrates the 
Output Menu and a portion of a typical run with the results generator. 
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MENU PATH: 
ACTIVE DIRECTORY: 

Yec MendDutput Mon~dCremte P lo t0  

>>Do you umntmd pr in ted  output? (y/n) 
(Pr lnted output . l a a m  program emcution)  

>> ENTER PRINTED OUTPUT FILEWME .................................... 
Y W R I C A L  ELECTRMACYETICS CODE .................................... 

Perfect ly  conducting 0phore rmdius=.498 m. Wmvelmngth = .9993 

- - - - - FREQUENCY - - - - - - 
FREQUENCY= 3 . e e e e ~ e z  MHZ 
WAVELENCTHx 6.9933.-81 Ml3ERS 

PLANE WAVE THETAx 9a.ee DEC, pnIx z?e.ee DEC, ETA= ine.ee DEC, TYPE -LINEAR= AXIAL RATIDZ n.eae 
Remdlng 1 o f  1 oolut lon vectorm 
CUR road f ra  
s hS.cur P> Contour p l o t  of surtmcm current.? (y/n) 0 

Figure 7.26. The Output Menu and a portion of a typical run with the output generator 
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SECTION VIII 

ANALYSIS OF THE NEC RESULTS USING THE ELECTROMAGNETIC 
INTERACTIVE ANALYSIS WORKSTATION 

A. INTRODUCTION 

The NEC code, described in Section IVY produces only a printed output file 
containing information about the currents induced in the object and about the near and far 
field radiation patterns. A new interactive code, NECPAT, has been developed, running 
on the Sun workstation computer, which displays results graphically using the solutions 
computed by the hypercube NEC code. Two distinct types of graphical display are 
possible. Using NECPAT, simple 1-d line plots of the variation of a specified quantity 
with one coordinate can be drawn interactively on the workstation screen. NECPAT can 
also create files containing information for 2-d color contour plots of the variation of a 
quantity with two coordinates. The graphics package (GPK) uses these files to create color 
contour plots where color is used to represent the value of the quantity on a 2-d grid. Some 
knowledge of PATRAN is needed to view the color contour plots. The more experienced 
PATRAN user will be able to use PATRANs flexibility and sophistication to make on- 
screen comparisons of various results from the same or different NEC runs using the files 
created by NECPAT. 

NECPAT's structure is flexible and modular so that additional output options can 
easily be incorporated and so that NEC and NECPAT can be merged together in the future 
when it becomes possible to use the Sun computer as a host for the hypercube. In this 

section, the NECPAT code is described and the available analysis options presented. 

B . DESCRIPTION OF THE EIAW CODE NECPAT 

The function of the NECPAT code is to provide interactive analysis of NEC results 
which were previously computed in the hypercube by the NEC code. NECPAT is a 
sequential code which runs on the EIAW computer. This code, along with the GPK, 
allows the user to calculate, print, and plot most of the near and far field radiation pattern 
information which is available as printed output from the original NEC code [8-11. The 
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NECPAT code is launched from the EIAW when the user moves to the Output Menu from 
the Main Menu (Figure 7.3) and from there chooses the Create Plots option. 

NECPAT does not solve electromagnetic problems but uses as input solution files 
computed by the hypercube NEC code. The NEC code itself, described in Section IV and 
Ref. [8-11, solves a matrix equation to determine the currents induced in a metallic object 
when the object is excited either by an applied voltage or an incident electromagnetic wave. 
Specifically, the induced current is expanded in known basis functions, and NEC solves 
the matrix equation A F = E to determine the amplitudes, F, of these basis functions; here E 
is the (specified) excitation vector and A is the interaction matrix of order N + 2M where N 
is the number of wires and M is the number of patches used to model the object. It is this 
solution vector F which is utilized by NECPAT to provide interactive analysis of the NEC 
results. The parallel NEC code has been modified so that it now creates a file for NECPAT 
which contains vector(s) F. This solution file contains all the geometry and excitation cards 
from the NEC input file used for the run. 

When the parallel NEC code is launched from the EIAW, the solution file is 
automatically passed back across the Ethernet network to the Workstation for use as input 
to NECPAT. NECPAT calculates the induced currents from the solution vector F and 
geometry information in the solution file. Using the induced currents, NECPAT 
interactively calculates the user-requested output. 

Figure 8.1 shows a simplified block diagram of the structure of NECPAT in 
comparison with the structure of the hypercube NEC code. The input portions of the two 
codes, the portion where the geometry and excitation cards are read and interpreted, are 
identical. After completing the input portion of the code, the two codes differ. NECPAT 
reads the solution vector F from the solution file at the point where the hypercube NEC 
code starts up the element code to fill and solve the matrix equation for F. Following this, 
the NECPAT calculation of the induced currents from the basis function solution vector is 
identical to that in the NEC code. NECPAT then queries the user as to what output to 
create. 

An alternative approach to the analysis of NEC results is to specify the desired 
output before the parallel NEC code is launched and compute this output in the hypercube. 
This would entail storing the requested current and radiation pattern information in a file. 
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Workstation 

input 

0 

elements 

NECPAT 

solve 
F = A'E 

~ 

read F 
from file 

calculate 
I from F, 
radiation 
patterns 

Hypercube 

CP 
pass input 

pass F 

b 
0 

elements 

Parallel NEC 

write F 
to file 

Figure 8.1. Block diagram of the structure of NECPAT in comparison 
with the structure of the hypercube NEC code 

This file would then be passed to the EIAW, where the information would be read and 
plotted. This approach was not selected for two reasons: 1) The file containing the 
radiation pattern information would be typically large (1 kilobyte to 1 megabyte per 
solution), making long-term file storage a problem. 2)  Since the output would be specified 
before the run was made, the user would not have the flexibility of requesting further 
output, e.g., the same plot with finer resolution, based on the plot he has just seen. 

Thus the main advantages of our approach to the analysis of NEC results are that 1) 
only relatively small solutions files need to be saved, and 2) the user can request additional 
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output plots at any time. If, on the basis of viewing one plot, the user decides that more 
resolution or further information is needed, another plot can easily be generated. For 
comparison, a plot from a previous run also can be generated. 

The one disadvantage of our approach is that the user must wait while the 
Workstation computer calculates the necessary field information from the induced currents. 

C . NECPAT OUTPUT OPTIONS 

NECPAT interactively gives the user information about the currents induced in the 
object and the scattered electromagnetic near and far fields. Three types of output can be 
created: 1) simple 1-d line plots on the EIAW screen which can also be saved in a graphics 
file for printing on a laser printer; 2) files for color contour plots which are viewed using 
the GPK; and 3) a printed output file containing the currents and all of the radiation pattern 
information requested for plotting. If the user wants to plot 1-d graphs directly to the 
Workstation screen, NECPAT is started up in the EIAW environment by choosing Create 
Plots from the Output Menu. 

1. Far Field Information 

In the far field approximation, the scattered electromagnetic field 
information depends on distance from the object only via a factor, (l/R)exp(ik.R), where 
R is the vector from the center of the object to a point in the far field and k is the wave 
vector. NECPAT factors out this radial dependence so that the far field information 
depends only on two spherical coordinates, 0 and @. The relationship of this spherical 
coordinate system to the rectangular coordinate system used in NEC, NECPAT, and 
PATRAN is shown in Figure 8.2. 

a. Color Contour Plots. NECPAT has options for calculating and 
creating files for 0-0 color contour plots of any of the far field quantities calculated by the 
original NEC code. These far field quantities include total and component gains (or radar 
cross sections for scattering problems) and the magnitude and phase of both the 0 and Cp 
components of the electric fields (with the radial dependence factored out). NECPAT 
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tZ 

X 

Figure 8.2. Definition of the spherical coordinate system used in NEC, 
NECPAT, and PATRAN 

queries the user as to which region in 8 and Q is to be plotted and the number of 8 and Q 
increments to be used. NECPAT then computes all the far field information for the 
specified range of points in 8 and Q and writes the information to a file. 

Using the GPK, the color contour plots are actually drawn on the surface of a fully 
three-dimensional sphere (or portion thereof) of unit radius. Thus, if the user specifies the 
entire sphere (8 = 0 - 180 degrees, Q = 0 - 360 degrees), the GPK contour plots far field 
quantities directly onto the surface of the unit sphere. Using GPK commands, the user can 
interactively rotate this sphere to view any region in 0 and Q. A color bar on the right of the 
Workstation screen gives the numerical values for the various contour levels. 

In order to make these contour plots, NECPAT creates three distinct files for GPK. 
One file, a application-independent neutral file (see Section VIII.B.2 and Figure 7.8), 
contains the information needed by GPK for creating a 3-d partial or full unit sphere with 
nodes at the specified points in 8 and Q. Another file, a node results file, contains the 
various far field quantities for the requested points (nodes) in 8 and Q. A node results file, 
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like a neutral file, is a strictly formatted text file with one record (line) per node containing 
the node ID in the first column and up to 200 columns of results for this node. 

The far field results file created by NECPAT contains nine columns of information 
for each node (e-$) point. These columns contain the same information (in the same 

order) which appears in the original NEC printed output of the radiation pattern, but 
without the three polarization columns. Thus, the first two columns are 8 and $ for this 
node; the next three are the three gains or scattering cross sections (vertical, horizontal and 
total, or major, minor and total, as requested); and the last four are the magnitude and phase 
of the 8 and $ components of E, respectively (see [8-11). Upon request, GPK will create a 
color contour plot of any of these columns. 

A third PATRAN file is also created by NECPAT: a PATRAN session file. A 
session file is a text file containing commands which a user would normally give to a 
terminal. The graphics package creates such a session file automatically each time it runs. 
All commands entered by the user via the terminal are saved in this file. PATRAN offers 
the user the option of input via session files so that long, tedious user sessions, or portions 
thereof, can be automatically repeated by the user without reentering the commands from 
the terminal input. These files are discussed in detail in the graphics software manual 
[8-21. The session files created by NECPAT contain the PATRAN commands for creating 
the color contour plot of the total gain (or radar cross section for scattering problems) for 
the specified portion of the unit sphere. Once the graphic software has finished executing 
the commands in the session file, the user can then interactively display contour plots of 
any far field quantities contained in the results file. Moreover, by using PATRAN's split 
screen capability, comparisons of different far field quantities, or the same quantity from 
different solutions, can also be made. 

b. 1-d Line Plots. NECPAT can create directly on the EIAW screen 
simple 1-d line plots of the same far field information discussed in the contour plot section, 
e.g., the three gains (or scattering cross sections for scattering problems) and the 
magnitudes and phases of both the 8 and Q, components of the far electric field. A sample 
ld plot of the magnitude of the 8 component of the far electric field for $ = 180 - 360 
degrees at 8 = 90 degrees is shown in Figure 8.3. The case plotted is the test case 
presented in Section V. Figure 8.3 corresponds to a slice through the contour plot shown 
in Figure 5.14 at 8 = 90 degrees. For NECPAT to create a I-d line plot, the user must 
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0.21874~4-00 

0.18000etO3 
eth(mag) versus _phi 

90.00 - degre at - tkt* - 

0.36000et03 

Figure 8.3. Sample 1-d far field plot for the test case of Section V 

specify 1 )  the coordinate to vary, 2) the range of variation, 3) the value of the increment in 

the coordinate to vary and 4) the fixed value of the other coordinate. Any of the far field 
quantities can then be plotted with this choice of x-axis. If the user requested that the I-d 
line plots be saved in a file, these plots can also be sent to a laser printer (or viewed again) 
after NECPAT is terminated. This involves the use of several other programs to translate 
the graphics file. 

c. Printed Output. If the user has requested that a printed output file 
be created by NECPAT, all the far field information for the values of 8 and @ requested for 
either 1-d or contour plots will also be written to the output file. . 

8-7 



2. Near Field Information 

To describe the far field, only two components of the electric field and two 
coordinates (E0, E$, 0, $) are needed because the radial dependence could be factored out; 
all of the far field information could be contained in two unit-sphere contour plots, one of 
E0 for all 0 and $ and one of E@ for all 0 and $. A complete description of the near field 
pattern requires knowledge of all three components of both the electric and magnetic field at 
every point (Ex, Ey, Ez, Hx, Hy, Hz, x, y, x). A description of the near field on just one 
plane (e.g., the x-y plane at a fixed z) requires six contour plots for the electric and 
magnetic fields. Because there is so much more information needed to describe the near 
field, the near field portion of NECPAT is somewhat more complicated than the far field. 
Moreover, the original NEC code allows the user to obtain near field information in either 
spherical or rectangular coordinates. NECPAT is limited to rectangular coordinates for 
near field output. 

a. Color Contour Plots. NECPAT has options for creating files for 
rectangular contour plots of any component (magnitude and phase) of either the electric or 
magnetic field for any regions of any x-y, y-z, or z-x plane. 

To generate near field contour plots, NECPAT first queries the user as to which 
spatial region is to be plotted and with what resolution, Le., which plane (which fixed 
coordinate) and what range of the other two coordinates and with what increments. The 
user next must specify whether the electric or magnetic field is to be plotted (the component 
or phase to be plotted is not specified at this time). NECPAT then calculates all three 
components (magnitude and phase) of this field for the specified range of points (nodes) 
and puts this information in a compatible node results file. The near field results files 
contain six columns of results for each node, e.g., EX(magnitude), EX(phase), 
EY(magnitude), EY(phase), EZ(magnitude), EZ(phase), respectively, for the electric field 
file. NECPAT also creates a PATRAN session file for creating the grid points and the 
plots. NECPAT then asks the user as to whether the other field (E or H) should be 
calculated for this same range of points. 

To view a near field contour plot, the user runs the graphics software using the 
NECPAT-generated session file; this file contains commands to create the grid and read in 
the file containing the calculated near fields. GPK can then contour plot any component or 
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phase specified by the user. (The near field results files contain six columns of results, 
e.g., EX(magnitude), EX(phase), EY(magnitude), EY(phase), EZ(magnitude), EZ(phase) 
for the electric field file.) Using PATRANs split screen capability, different components 
or phases can be plotted in different windows. Because of PATRAN's flexibility, the user 
can also use the split screen to compare electric and magnetic fields or electric fields from 
two different runs. Moreover, the graphics software also allows vector results such as 
these near electric field results to be displayed as colored vectors in its three-dimensional 
space; the direction of the plotted vector is the direction of the near electric field and the 
color gives the magnitude. 

b. 1-d Line Plots. NECPAT can create directly on the Workstation 
screen simple 1-d plots of the magnitude and phase of any rectangular component of the 
near electric and magnetic fields for any range of x, y or z (at any fixed values of the other 
two coordinates). For example, Figure 8.4 shows a line plot of the magnitude of the z 
component of the electric field as a function of x at y = -0.6163 and z = -0.3 for the test 
case in Section V. This corresponds to a slice through the contour plot of Figure 5.2 at z = 

-0.3. As for the far field, these plots can also be saved in a file and printed or viewed later. 

The user must specify to NECPAT the coordinate to vary, the range of the 
coordinate to be plotted, the increment, and the fixed value of the other two coordinates. 
The user also specifies which field (E or H) is to be plotted. NECPAT then calculates the 
magnitude and phase of all three components of the specified field; the user can then 
request a plot of any of these. The user can then also ask NECPAT to calculate and plot the 

other field for this same range of points. 

c. Printed Outmt. If the user has requested that a printed output file be 
created by NECPAT, the near field information for the fields (E and/or H) for the values of 
x, y, and z requested for either 1-d or contour plots will also be written to the output file. 
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Figure 8.4. Sample 1-d near field plot for the test case of Section V 

3. Induced Currents 

a. Color Contour Plots. For objects modeled with quadrilateral 
patches only, NECPAT has an option for creating a file for a color contour plot of the 
magnitude of the induced currents. The GPK is used to make color contour plots of the 
currents displayed on the three-dimensional object itself. Within GPK, the object can be 
rotated, or viewed from several angles using a split screen, to see the induced currents on 
various portions of the object's surface. 

Specifically, upon request, NECPAT creates a PATRAN-formatted element results 
file containing the magnitudes of the induced current in each patch of the object. The 
magnitude of the currents are presently in column 1. The user must also have an 
application-independent neutral file for the object's geometry (see Section VII.B) which 
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contains finite element information for each patch. To create the contour plot of the induced 
currents, the user runs the graphics software and 1) uses the interface mode option to read 
in the object's neutral file; 2) uses the results mode option to read in the element results (the 
magnitude of the currents); and 3) uses the contour plotting option to view the results. If 
the object's neutral file does not exist, it can be created from the geometry information 
contained in the solution file using the translator (Section VILA). At present, this option is 
implemented for objects modeled with quadrilateral patches only. 

b. Printed Outuut. Upon request, the currents in both wires and patches are 
put in the printed output file in the same format as in the original sequential NEC. 

D. FUTUREPLANS 

Several additional options for the analysis of NEC results are planned for the next 
year. Three additional options are planned for NECPAT: 1) Options for creating near field 
1-d and 2-d plots in spherical coordinates will be added. 2) The capability of making 
contour plots of the induced currents on the surface of objects modeled with arbitrary and 
triangular patches will be added. At present this option is implemented only for objects 
modeled with rectangular or quadrilateral patches. 3) An option to plot the monostatic radar 
cross section as a function of wave number will be added. Since each wave number 
corresponds to a separate NEC solution, this will involve combining information from 
several NEC solution files. 

Soon it will be possible to use the Sun workstation computer as the control 
processor for the hypercube. In this situation, the hypercube NEC code and the 
workstation NECPAT code will be merged so that the code structure will be as in the earlier 
hypercube NEC code (with the Sun running the CP portion). The output portion of the 
hypercube NEC code would then be replaced with the interactive output code from 
NECPAT and the requested radiation pattern information would be calculated in parallel in 
the elements. The user would have options for either computing the solution or reading it 
from a file. 
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SECTION IX 

CONCLUSIONS 

The first objective of the Hypercube Matrix Computation task is to investigate the 
applicability of a parallel computing architecture to the implementation and solution of 
large-scale electromagnetic scattering problems. Three analysis codes are being assessed on 
a parallel computing Mark I11 Hypercube. The first code which has been implemented is 
the frequency domain method of moments solution, Numerical Electromagnetics Code 
(NEC-2), developed at Lawrence Livermore National Laboratory. The second code is a 
time domain finite difference solution to Maxwell's equations. A third code currently being 
developed utilizes a finite element technique. The second objective of this effort is to 
measure the performance of the parallel electromagnetics scattering analysis codes. The 
third objective is to integrate the developed analysis capabilities into an Electromagnetic 
Interactive Analysis Workstation. The workstation has been designed to facilitate all three 
analysis functions: 1) graphical specification of the problem (Le., the object to be 
analyzed), 2) execution of the analysis codes, and 3) graphical display of the output. 

Several quantitative measures of performance may be applied when assessing the 
applicability of parallel architecture to large-scale electromagnetics scattering problems. 
First, the problem size possible on the hypercube with 128 megabytes of dynamic memory 
for a 32-node configuration is compared with that possible on a conventional mainframe or 
minicomputer. Second, the performance of the codes can be analyzed for the 
computational speedup attained by the parallel architecture. The speedup can be measured 
in at least three different ways: 1) comparing the times for the code running in 32 nodes 
with the times for the code running in a single node; 2) comparing the times (and therefore 
scalability to larger hypercube configurations) when the problem size per node is fixed and 
the number of nodes in use is varied; and 3) comparing the CPU times for key components 
of the code running on the 32-node Mark III Hypercube with the CPU times for the same 
code components running, for instance, on a VAX 111750. 

A. PROBLEMSIZE . 

In addition to providing multiple processors for increased computing speed, parallel 
computing architectures offer the possibility of an increase in available memory if each 
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node has its own memory. The VAX 11/750 has about 5 megabytes of memory to a 
typical user whereas the Mark 111 has four megabytes per node, which gives a total of 128 
megabytes of dynamic RAM available on a 32-node hypercube. 

For the NEC code, the size of the largest problem that can be run is determined by 
the largest interaction matrix which can be stored in memory. The matrix is NT x NT with 
NT = N + 2 x M where N is the number of wire segments and M is the number of patches 
used to model the object. Unless the symmetry option can be invoked, the largest problem 
that can run on the VAX in the typical user space has 300 equations. This means that the 
largest object which can be modeled contains 300 wire segments or 150 patches. On the 
Mark 111 32-node, the largest problem currently can contain as many as 2400 wires and or 
1200 patches (more, if the symmetry is invoked). The total matrix which is distributed 
across the nodes of the hypercube then contains 2400 x 2400 double precision complex 
elements. This reflects a factor of 8 increase in terms of the number of patches in the 
modeled object relative to that on a VAX. With the availability of four disk drives, the 

maximum problem once the out-of-core capability is implemented is 5000 patches or 
10,000 wires. 

For finite difference code, the largest size problem is determined by the number of 
unit cells used to model the computational lattice. For the VAX 11/750, we can allocate 
memory for about 192,000 unit cells. For the Mark 111 Hypercube with 32 nodes active, 
we can allocate memory for about 2,048,000 unit cells. 

B. HYPERCUBE PERFORMANCE 

1. Code Speed on 32 Nodes Relative to 1 Node 

To measure the suitability of the codes to the parallel architecture of the hypercube, 
we use the speedup factor, defined as the ratio of the run time on N nodes to the run time 
on just 1 node. If there are no penalties associated with the parallel computing 
decomposition, the speedup factor would be N. However, when a code is run on multiple 
nodes of a parallel computer, the speedup does not increase linearly with the number of 
nodes because there is some "overhead" associated with running in parallel. The parallel 
overhead can be due to several sources: time spent in communication between nodes, time 
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lost if the work load among the nodes is not exactly the same, and additional code for the 
administration of the parallel code. 

The FDTD code is an excellent candidate for a parallel architecture because the fmite 
difference method is intrinsically a "local" calculation. The computation at each grid point 
utilizes information from at most two unit cells. This local calculation feature permits low 
parallel communication overhead. Also, load imbalance is not a serious problem because 
we can evenly divide the global grid among the nodes. The suitability of this code for 
parallel computing is reflected in the high speedup factors. For the largest problem that 
could be run on 1 node, the speedup factor in going from 1 to 32 nodes was 25.4 (or 
79.3% efficient). It is important to note that because the problem size remains the same, 
the number of cells in each node of a 32-node configuration is reduced by a factor of 32. 
The larger hypercube configurations are therefore not run at full capacity. In other words, 
the ratio of computation to communication times is reduced. For larger problems, where 
we run the' same-size problem on 32 nodes that saturates an 8-node configuration, the 
number of cells in each processor is reduced by a factor of 4. The speedup factor in going 
from 8 nodes to 32 nodes is 3.7 (or 92.7% efficient). 

For the NEC code, speedups are given for the two computationally intensive parts 
of the code separately, the matrix fill and, the Gaussian elimination factorization time. The 
speedup for these times summed are also given, in Section IV. The fill of the interaction 
matrix is also ideally suited to parallel architecture because the various rows of the matrix 
can be filled independently of each other, leading to very low communication overhead. 
However, when the number of rows is not much larger than the number of nodes, load 
imbalance becomes apparent in the statistics from the various nodes. Nevertheless, the 
speedups found for the fill are excellent. For one of the largest problems that can fit into 
one node (290 wire segments), the speedup factor for 32 nodes relative to 1 node is 25.1. 

Because by nature matrix operations generally need information from many or all of 
the other matrix elements, matrix computations typically demonstrate less speedup than 
other algorithms, where the data internode communication requirements are low or 
confined to neighboring nodes. For this reason concurrent implementation of matrix 
algorithms requires great care. Data must be distributed so that the amount of 
communication is minimized. For parallel NEC, the internode data dependency is reflected 
in the relatively lower speedups for the factorization part compared to the fill. As shown in 
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Figure 4.26, an appreciable speedup factor of 21.4 has been obtained particularly for larger 
problems (again, 290 wire segments). 

2. Fixed Problem Size 

Measuring how a problem scales by comparing the execution time on a 32- 
node hypercube with the time on a single node tends to show a gradual drop in 
performance as the number of nodes in use is increased. This occurs because the ratio of 
computation to communication is dropping as the number of nodes is increased. Although 
the overall problem size has remained the same, each node has less computational work to 
do whereas the amount of communication has either remained the same or, in some cases, 
increased. For this reason, to better understand how a particular algorithm scales to larger 
hypercube configurations, we need to keep the computational load fixed. 

The fixed problem size performance test has been performed for the FTDT code and 
the fill of the interaction matrix in the parallel NEC code. In both cases, once the 
computational load per node was held the same, the performance increased nearly linearly 
with the number of nodes in use. In other words, the overhead incurred in both cases for 
communication was small. We did not do the fixed case problem, however, for the matrix 
factorization in the parallel NEC code. To keep the computational load fixed per node, 
larger and larger matrices would need to be generated, requiring increasingly more 
transformation steps. In this case the communication would increase with the number of 
transformation steps required. 

3. Comparison With Other Sequential Computers 

Timing comparisons between the VAX and the Mark 111 32-node for the 
NEC code were done for two different types of problems. One was a problem in which the 
object was modeled by patches (Table 4.1) and the other one a problem in which the object 
was modeled by wires (Table 4.2). Comparisons are provided for both because, for a 
fixed number of segments or patches, the matrix fill portion of the code takes more 
computations for wire structures than it does for surface patches. For the largest problems 
that can be run on the VAX, the Mark I11 32-node overall is 29.6 times faster for the patch 
case (224 patches) and 26.4 times faster for the wire case (290 wire segments). Thus a 

9-4 



wire case that runs for an hour on the VAX is reduced to 2.0 to 2.3 minutes on the Mark 
I11 Hypercube. This speedup makes it feasible for the user to run the NEC code in an 
interactive mode, rather than in a batch mode. 

Direct timing comparisons between a Mark I11 Hypercube using 32 active nodes 
and a VAX are not available for the finite difference time domain code. We can, however, 
make an estimate of the relative performance by executing the Taflove sequential code on a 
VAX and comparing it with the performance of the parallel FDTD code running on the 
hypercube. Both codes are similar in capabilities. For a conducting cube embedded in a 40 
x 40 x 40 lattice, the Mark I1 Hypercube ran approximately 22.7 times faster than the 
Taflove code running on a VAX 11/750 and 8.8 times faster than that code running on a 
VAX 11/785. 

C . ELECTROMAGNETIC INTERACTIVE ANALYSIS WORKSTATION 

The hypercube has reduced the execution times for the analysis codes so 
significantly that even moderate-size problems can now be run interactively. To ease the 
specification of the scattering or radiating structure and to simplify the interpretation of the 
output, we have embedded the analysis codes in a workstation environment which 
combines the computational power of the Mark I11 Hypercube with the color graphics and 
user-friendly multi-window environment available on a Sun Color Graphics workstation. 
The Electromagnetic Interactive Analysis Workstation allows the user to specify an object 
to be analyzed by graphical object specification or by interacting with an application- 
intelligent editor. Hypercube execution is invoked directly from within the workstation 
environment. The output may be analyzed by requesting any of a host of 2-d and 3-d 
graphical representations of such information as the currents, near fields, far fields, or 
radar cross sections. 

D. CURRENTWORK 

In the finite element part of our electromagnetics analysis development, the 
objective is to evaluate candidate matrix algorithms for parallel application in finite element 
scattering problems on the hypercube. A family of iterative solution methods based on the 
method of conjugate gradients has been demonstrated and shown to be amenable to 
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efficient parallel computation. Preliminary work on the development of the parallel 
program is under way, and efforts in the near future will include the concurrent solution of 
larger problems of practical interest, as well as enhanced matrix solution and domain 
decomposition algorithms. 

The parallel method of moments code (NEC) is being enhanced by the addition of 
an iterative implementation of a Numerical Green's Function which will allow incremental 
design of a structure. The addition of disk drives attached directly to hypercube nodes 
allows the storage of previously factored interaction matrices which can be reloaded for 
subsequent solutions. In addition, the disk drives allow larger problems to be solved by 
permitting out-of-core solutions. 

Although all of the timing runs presented in this report were made using the 
Motorola 68020 math co-processor, the Motorola 68881, two 32-node hypercubes have 
now become available with the floating point accelerator daughterboards added. In the fall 

these 32-bit floating point units are scheduled to be upgraded to support @-bit arithmetic. 
In addition, by January 1989 the 128-node Mark III Hypercube will be available. Soon we 
plan to update the performance results for the test cases that we have reported here by using 
the newly accelerated hypercubes. 

We have demonstrated that the hypercube is very well suited to the solution of 
large-scale electromagnetic scattering problems. Three different analysis codes are being 
assessed: time domain finite difference, frequency domain method of moments, and 
frequency domain finite elements. Each of the codes makes use of different numerical 
algorithms and thereby provides a demonstration of the flexibility of the hypercube 
architecture to different applications. The 32-node Mark 111 Hypercube has been used to 
concurrently solve electromagnetic scattering problems too large and/or too time consuming 
to be done on a sequential computer such as a VAX. Our ability to measure and 
characterize the performance for variable-size hypercube configurations plus the additions 
of the very high speed floating point processor daughterboards and of the concurrent 
input/output devices allow us to extrapolate to the performance of even larger 
configurations on larger problems. 
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